IO多路复用模型:select、poll、epoll对比

IO多路复用模型:select、poll、epoll对比我们平时提到的I/O几乎都是同步 阻塞模型,譬如网络请求的socket IO,在数据返回前,相应的线程或是进程将会一直 阻塞直到数据返回,比较直接的处理便是针对IO流一对一的监听,但在IO返回前,相应的系统资源会平白无故的浪费,这种处理方式会大大降低服务器的吞吐 如果我们用很少的线程来监听这些IO,就能实现对系统资源的更好利用,在相应的socket有数据返回时才去读取数据 这种方式被称作IO多路复用,在Linux系统中,实现IO多路复用的方式(从古老到新)有select、poll和epoll 现在很多中间件都使用epoll IO多路复用模型才因此有着很高的性能和吞吐 此处简单描述三种方式的实现和区别
IO多路复用模型:select、poll、epoll对比2020-08-11鱼鱼

Spring MVC源码和设计思想2 HandlerMapping

Spring MVC源码和设计思想2 HandlerMapping系列传送门Spring MVC源码和设计思想1 DispatcherServlet-鱼鱼的博客 此篇篇幅很长,且慢慢道来 在之前一篇中,DispatchServlet的doDispatch()方法中有这么几行: 其中getHandler方法: handlerMappings是一个初始化过的List,通过它获取HandlerExecutionChain HandlerExecutionChain存储了一个Object(其实就是HandleAdapter)和一个拦截器(HandlerInterceptor)数组,在doDispatch方法中执行了applyPreHandle和applyPostHandle方法,方法就是分别迭代调用了拦截器数组的postHandle和preHandle,同样地,发生异常时的triggerAfterCompletion也映射到了afterCompletion方法
Spring MVC源码和设计思想2 HandlerMapping2019-06-12鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼

数据库的存储过程、触发器和一些语法

数据库的存储过程、触发器和一些语法本篇文章讲述基于MySQL的存储过程触发器和一些相关的语法 在数据库中,存储过程是指将复用度很高并且不需要通过程序进行预编译的的SQL语句预先写好存放起来(此处所指的为用户定义在数据库中的存储过程),在需要时直接通过call调用 先看一个例子(注意,这不是创建存储过程的语句): 其中使用了日期相关的函数,DATE_SUB(CURDATE(),INTERCAL 10 DAY)代表当前时间前推十天 这个存储过程作用是查出十天前的数据然后将其删除 MySQL默认的分隔符是" ; ",这样一来定义存储过程就会因为 ; 被打断,所以在定义存储过程前后需要修改分隔符,使用DELIMITER关键字跟随分隔符,实际创建存储过程语句为:
数据库的存储过程、触发器和一些语法2019-06-12鱼鱼

1
空2025-09-05鱼鱼

ES快速入门(2)——Tokenizer、Reindex

ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
ES快速入门(2)——Tokenizer、Reindex2020-09-05鱼鱼

Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证

Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证2020-11-16鱼鱼

[Quick Start]使用RedisTemplate操作Redis

[Quick Start]使用RedisTemplate操作RedisRedisTemplate现在作为使用率最高的redis三方类库,隶属Spring技术栈,此篇文章意在指引RedisTemplate的快速上手 在实践前,请确保已经有一个可连接的Redis服务 Redis有五大基本数据类型:string、hash、list、set和zset string即是最单纯的k-v存储方式,使用set、get等指令 hash是哈希表的存储方式,比较适合用来存储对象,每一条value相当于Java的一个Map,使用hmset、hget等指令 list是简单的有序列表,每一条value相当于Java的一个List,使用lpush、lpop、rpush、rpop等指令
[Quick Start]使用RedisTemplate操作Redis2020-02-23鱼鱼

浅谈代理-动态代理

浅谈代理-动态代理我们可以很轻松的实现一个简单的代理 实现静态代理是个很简单的事情,最基础的代理只需要定义一个接口(虽然不是必要,但这显然才是标准的设计)、一个被代理类和一个代理类,例如: 定义一个接口: 一个实现类: 和一个代理类: 实际使用时,我们是去调用HelloWorldProxy的方法,其将作为HelloWorld的代理实现 此种方式直接实现的代理太过于死板,因为每一种代理行为都要制定一个代理类,我们熟知的很多基于代理的实现(譬如AOP、事务)显然不可能用静态代理的方式针对每一处类切点都覆写一个代理类,这种时候就需要动态代理 我们所熟知的相当多的框架均基于动态代理开发,JDK本身基于反射(java.lang.reflect)提供了动态代理,我们只需定义代理的行为,而对于代理类的范围并不是固定值
浅谈代理-动态代理2020-10-13鱼鱼

算法:动态规划解法及例题

算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌
算法:动态规划解法及例题2020-03-11鱼鱼

CAT的使用和原理简介

CAT的使用和原理简介开发中刚好碰到了CAT的应用,利用这篇文章总结一下
CAT的使用和原理简介2019-08-07鱼鱼

盘点redis中特殊的数据类型 HyperLogLog Bitmap

盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
盘点redis中特殊的数据类型 HyperLogLog Bitmap 2022-01-12鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}