Linux常见指令集和使用技巧(持续更新)
Linux常见指令集和使用技巧(持续更新)目前是一步一步记录用到了的Linux指令 | 管道,将符号前的指令输出作为符号后的指令输入 > 将正常输出重定向(比如指令打印内容输出到文件) >> 将正常输出追加重定向(区别与上面的覆盖,这个指令对于已经存在的文件会追加内容) & 后台执行 && 前面的指令执行完毕才执行后面的指令 || 前面的指令执行出错才执行后面的指令 ls 显示目录下的文件目录或者列出文件信息 ll 属于ls,列出目录下的所有文件信息 cd 进入目录 pwd 显示当前目录的绝对路径 mkdir 创建目录 rm 删除目录(慎) mv 移动目录 即文件的打包安装,对于不同的Linux系统使用的工具有所不同,此处使用ubuntu系统,利用apt工具进行打包

2019-09-09鱼鱼
算法:广度优先搜索(BFS)(最短路径)
算法:广度优先搜索(BFS)(最短路径)我们先看一个案例: 遍历一个树结构,按层次输出树的节点内容,即:欲求 A B C D E F 实现方式便是从根节点(A)向下遍历,先获取A,其次是A的子节点B和C,其次是B的子节点D…… 这种遍历树结构或者图结构的方法被称作广度优先搜索(BFS),与之对应的先遍历到最下层子节点的是深度优先 BFS核心采用队列的数据结构,例如上面的树结构中,解法为: A进队列->A出队列 B、C进队列->B出队列 D进队列 ->C出队列 E、F进队列-> D、E、F出队列 如果想要区分层次边缘,使用count参数即可 解法步骤(蓝色部分为已经处理完的节点):

2020-06-05鱼鱼
多线程应用提高(I) 多线程常见问题、常用方法和关键字
多线程应用提高(I) 多线程常见问题、常用方法和关键字我们一般熟识的创建多线程方式即为继承Thread类或是实现Runnable接口,重写run()方法,还有创建线程池实现 手动定义一个线程任务(作为内部类)的方法现在已经不被提倡,所以遇到可能存在并发的复杂任务时,一般采用线程池来实现 一些设计并发常用并且容易被混淆的方法们: static sleep() : Thread类的静态方法,阻塞当前正在线程,不释放锁; wait() : 当前线程暂停,并释放锁且暂时无法重新获得锁,必须绑定当前对象内容锁(如使用Synchronized的同步块),知道其他线程调用notify()/notifyAll()才有机会获得锁继续执行; yield() : 当前线程暂停,此时时间片分配给其他线程,但是不会分配给优先级更低的线程;
![多线程应用提高(I) 多线程常见问题、常用方法和关键字]()
2019-12-07鱼鱼
Spring的事务
Spring的事务Spring事务将一系列操作绑定为具有原子性的操作,此篇文章讲基于Spring提供的声明式事务 MySQL的事务我们已经明白,Spring的事务是委派了ORM框架来解决相应的问题,在jdbc中,体现的就是在Mybatis框架中,体现的就是SqlSession的建立到提交 声明式事务:在方法或是实现类上加上以下注解: 其中一些常用参数: propagation:配置事务传播行为;(后面详细解读) isolation:事务隔离级别; timeout:超时时间; roolbackFor:导致事务回滚的异常类设置; readOnly:boolean,是否只读 有七种事务传播行为,用来决策当发生事务嵌套时的解决方案
![Spring的事务]()
2019-07-18鱼鱼
Mybatis的缓存机制、redis数据库缓存实现和相关问题
Mybatis的缓存机制、redis数据库缓存实现和相关问题高并发环境下,数据库要承受非常大的压力,我们不能奢求每一次都只依赖分布式结构的读写分离数据库来解决问题,所以引入了数据库缓存的概念,这里的缓存不是具体的memcache或是redis,可能只是一块内存区域 此文介绍Mybatis的缓存机制 SqlSession是Mybatis创建数据库链接的会话,当度使用Mybatis需要对SqlSesssion的生命周期有一个把控,但是在Spring的集成中这个会话会被自动创建,周期只是对应一个方法(例如Service层的一个方法),所以每个请求就会对应一个或是多个SqlSession,SQLSession的主要实现是其中的Exector,对应了三种策略:

2020-03-03鱼鱼
代理与nginx
代理与nginx代理指接受请求但是不由代理服务器自己处理请求而是直接转发给指定服务器(或是根据负载均衡算法转发给集群部署中的某一台服务器),然后由代理服务器接收请求结果并返回给客户端 指客户端的代理处理方式,指用户通过代理服务器访问指定的网站、服务,最常见的应用是翻墙,并且使用这种方式可以使客户端匿名访问 指服务端的代理处理方式,多个用户在访问网站服务时,实际访问的是反向代理服务器(如nginx),反向代理服务器将请求内容转发给服务集群,最常用于服务器集群负载均衡和避免内网信息暴露 总之,正向代理是对服务端隐藏了客户端信息,反向代理则正相反,有一张图可以很好地概括这两个代理概念(图源知乎,侵删)

2019-05-11鱼鱼
用Quartz 写定时任务
用Quartz 写定时任务Quartz是OpenSymphony开源组织在Job scheduling领域的一个开源项目,是一款清新友好的任务调度框架 Quartz两大基本功能是job和SimpleTrigger(作业和触发器) 核心的是Scheduler类 有以下几个相关类: Scheduler:定时任务调度; Job:任务类需要实现的接口; JobDetail:Job的实例,被Scheduler执行的是JobDetail,而不是Job; Trigger:触发Job的执行; JobBuilder:定义和创建JobDetail实例的接口; TriggerBuilder:定义和创建Trigger实例的接口;

2019-06-18鱼鱼
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用Redis Pipelined是由Client提供的(是防止client端 阻塞的操作)一种请求redis的方式 Redis本身具有很高的吞吐量,因此性能最大的考察便是网络状况,如果应用到redis的网络状况不好,每次请求都将会出现轻微的 阻塞和延迟,这种延迟对于批量请求是很可怕的,譬如要进行数千次数据插入,或是批量获取数据时,我们就需要用到Pipelined Pipelined可以将多个请求无 阻塞的发出并按顺序将请求结果“打包”返回,这有点类似于并发请求,可以有效地利用等待结果的 阻塞时间 注意,Pipelined并不能保证原子性,即pipelined执行的内容可能会被其他客户端或是线程的指令"插队",若想要原子性操作,需要使用事务
![Redis高级特性:事务和pipelined以及在RedisTemplate中的应用]()
2020-06-21鱼鱼
分布式系统一致性的分类
分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功

2021-03-13鱼鱼
Elasticsearch 入门
Elasticsearch 入门(注:本篇文章基于Elasticsearch7.7.0版本,由于版本的差异性造成的内容不一致我会尽量在文中标出,但是) Elasticsearch是基于Lucene扩展的全文搜索引擎,当我们有对大数据量的处理和搜索时,全文搜索引擎是最佳的选择,同时他提供了高扩展性、高可用性、RestFul风格的API和友好的分布式部署配置,在此我们不予详述 我们日常使用的数据库索引是数据库一种编排数据(逻辑上)从而加快查询的手段,我们暂且将这种索引方式称为正排索引,他通过对待搜索字符寻址从而找到对应的数据 但是这种索引方式对于模糊匹配会出现"断档"现象(模糊符号后的片段无法走索引查找),并且对于海量数据无论在存储上还是在查找上都略显吃力,于是在Elasticsearch中引入了倒排索引来加快查询速度

2020-03-06鱼鱼
Redis原理-源码解析:数据结构3 hash
Redis原理-源码解析:数据结构3 hash 所有原理实现基于Redis版本6.0.9 hash在Redis中可以认为是套了一层的string,当然,对hash来说没有数字类型 让我们依旧通过基本命令看看hash的基本数据结构实现 在set方法中我们看到了hash的初始创建过程,一个hash最开始是zipist 想要了解ziplist可以看Redis原理-源码解析:数据结构2 list ,是为节省内存而生的链表格式 所以其实在使用ziplist时其查询的时间复杂度不是遵循hash的近似O(1),而是O(n),但是在数据量不大时,这种性能的损失微乎其微,并且能预见到大多数使用hash的场景都不会存储过多的字段 所以优先使用了更节省内存空间的ziplist

2020-11-29鱼鱼
MYSQL的索引、引擎的实现原理和应用
MYSQL的索引、引擎的实现原理和应用本篇主要介绍数据库MySQL的索引实现原理,包括B+ Tree的原理,顺带提到了数据库的常用引擎 我们常见的数据库引擎就是InnoDB,还有另外一个常见一个引擎叫做MyISAM,这里着重介绍着两个引擎,执行show engines,可见MySQL所有的引擎如下: InnoDB采用行级锁,不会记录表中的数据个数,支持外键,高并发下使用事务的首选引擎,也是5.5之后MySQL的默认引擎(之前采用MyISAM),可以通过bin-log日志回滚数据,所以它比较适合处理数据量大的数据 PS:InnoDB最初不支持全文索引,在MySQL 5.6版本后添加了支持 MyISAM跟InnoDB截然相反,它采用表锁,记录了表的条目数,SELECT COUNT可以直接查看表中数据个数,支持FULLTEXT索引,不支持外键和事务,不能进行数据恢复操作,他比较适合频繁插入的数据,或是读操作远大于写操作时

2019-09-15鱼鱼