IO多路复用模型:select、poll、epoll对比

IO多路复用模型:select、poll、epoll对比我们平时提到的I/O几乎都是同步 阻塞模型,譬如网络请求的socket IO,在数据返回前,相应的线程或是进程将会一直 阻塞直到数据返回,比较直接的处理便是针对IO流一对一的监听,但在IO返回前,相应的系统资源会平白无故的浪费,这种处理方式会大大降低服务器的吞吐 如果我们用很少的线程来监听这些IO,就能实现对系统资源的更好利用,在相应的socket有数据返回时才去读取数据 这种方式被称作IO多路复用,在Linux系统中,实现IO多路复用的方式(从古老到新)有select、poll和epoll 现在很多中间件都使用epoll IO多路复用模型才因此有着很高的性能和吞吐 此处简单描述三种方式的实现和区别
IO多路复用模型:select、poll、epoll对比2020-08-11鱼鱼

MySQL的数据锁 加在哪?

MySQL的数据锁 加在哪?此篇文章探讨MySQL数据库的锁,讨论MySQL各种语句将如何加锁,以及加锁的“效果”,主要针对默认的InnoDb引擎 基于MySQL5.6之后的版本 有心力的可以直接看MySQL官方文档,说的更为详细:14.7.3由InnoDB中的不同SQL语句设置的锁 按类型分,MySQL有锁: 行锁,最普通的锁,其实是加在索引上的锁 表锁,直接加在整张表的锁,一旦上锁整张表的操作都会比较锁 间隙锁,又称GAP锁,用于在涉及范围查询时给莫须有的位置加锁,防止并发插入等操作出现数据不一致(诸如幻读)的问题 间隙锁之间是不会冲突的 行锁与Gap锁合称Next-Key锁 间隙锁只能锁住间隙,即间隙锁不能指定具体的数据范围,将会锁上整个间隙
MySQL的数据锁 加在哪?2021-02-05鱼鱼

ooo

ooo拆箱:包装类-》基本数据类型 Integer Byte -127- 127是以缓存数组指向相同对象,之外的默认new 模块化 完全解耦 #预编译 $直接用 $内容手动干涉 Mybatis有三种基本的Executor执行器,SimpleExecutor、ReuseExecutor、BatchExecutor SimpleExecutor:每执行一次update或select,就开启一个Statement对象,用完立刻关闭Statement对象 ReuseExecutor:执行update或select,以sql作为key查找Statement对象,存在就使用,不存在就创建,用完后,不关闭Statement对象,而是放置于Map内,供下一次使用
ooo2019-04-02鱼鱼

多线程应用提高(II) 线程池

多线程应用提高(II) 线程池项目中,当发生并行操作时,一般都会用到线程池处理多线程任务,线程池的规则类似于数据库连接池,在此不予赘述 jdk自带线程池,此处主要讲述Spring框架自带的线程池ThreadPoolTaskExecutor 通过实现Runnable和Callable接口实现一个线程任务,从而能放入Executor进行线程管理 其中,Callable可以理解为带有返回值的Runnable,并且Callable需要实现的方法不是run()而是call(),该方法返回一个泛型对象 当我们把一个需要返回值的线程任务放进线程池后,线程池会返回一个Future对象,借助该对象,我们可以调用get()方法获取线程的状态,调用get()会阻塞当前线程直到返回结果
多线程应用提高(II) 线程池2020-02-25鱼鱼

排坑指南-异步操作HttpServletRequest丢失Cookie

排坑指南-异步操作HttpServletRequest丢失Cookie遇到了一个很奇怪的bug:请求鉴权失败,因为通过Request对象获取到的Cookie中没有数据 经过debug调用request.getCookies()方法返回了null值,但是header属性的cookie却能拿到用户的有效cookie(request.getHeader("cookie")),其中缘由,且慢慢道来 我们可以在web项目中通过Request对象很方便的获取Cookie对象: 但其内部实现其实有一层缓存逻辑,从名为"cookie"的请求头中读取并处理数据转为Cookie对象并不是个省时事,在org.apache.catalina.connector.Request类中可以看到如下代码实现:
排坑指南-异步操作HttpServletRequest丢失Cookie2020-11-11鱼鱼

算法1

算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高
算法12019-03-14Sherlock

使用Shiro和token进行无状态登录

使用Shiro和token进行无状态登录我们之前可以使用shiro实现登录,但这些都是基于session或是cookie实现的,这些只能用于单机部署的服务,或是分布式服务共享会话,显然后者开销极大,所以JWT(JSON Web Token)应运而生,JWT是一套约定好的认证协议,通过请求携带令牌来访问那些需鉴权的接口 我们在这里使用token,原理类似,但是规则更为简单,没有形式上的约束,只是在请求Head或是body中添加token用于校验用户身份,token是可以和会话共存的,此处我们使用Shiro的会话登录结合JWT来实现无状态登录,从而实现扫码登录和一般的接口访问授权 项目中,需要实现无状态登录(单点登录,SSO),但是同时也要保持Shiro本身自带的会话登录
使用Shiro和token进行无状态登录2020-03-22鱼鱼

JVM与GC

JVM与GCJMM,长下面这个样子: 其中,堆和栈区自然不做介绍了,主要介绍: 程序计数器:线程私有的,记录正在执行的字节码地址,换言之,它告诉我们某线程执行到了那里,分支、循环等也会依赖这个来执行,这一区域不会发生OOM问题 栈:就是正常所指的栈,每个方法被执行的时候都会同时创建一个栈帧(Stack Frame )用于存储局部变量表、操作栈、动态链接、方法出口等信息 每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程,这一区域会发生StackOverflow问题 堆:就是正常所指的堆,这里是GC的主要区域 方法区:线程私有的,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,运行时常量池也包含在里面
JVM与GC2019-03-28鱼鱼

Java排坑指南(I)jmap jstack jstat等的使用

Java排坑指南(I)jmap jstack jstat等的使用运用一些Java自带的可执行jar可以从内存的角度更轻松的排除项目中的问题,我们可能会遇到一些不常见却相对很致命的问题,例如: 某些web项目CPU跑到了100%并且飙高不下(一般来说,web应用都为IO密集应用,不太可能出现cpu高占用的情况) 项目中线程出现阻滞、阻塞(网络请求响应速度明显变慢,甚至因为死锁彻底出现阻塞等) 极可能由内存泄漏引发的不明原因的 OOM(没有预兆的或是基础逻辑问题的内存溢出) 当以上问题发生时,通过代码或是日志其实很难定位到原因所在,因为这一般是基于环境或资源导致的全局性问题,通常很难定位,这时可以通过使用Java自带的性能调优jar包更便捷的定位问题(如果没有配置环境变量,可以在jdk的bin目录下找到他们的jar包)
Java排坑指南(I)jmap jstack jstat等的使用2020-11-28鱼鱼

过滤器、拦截器、监听器和AOP

过滤器、拦截器、监听器和AOP用这篇文章来梳理一下这些杂七杂八的Spring MVC中的基础概念,顺便讲一下在项目中的一些基本使用和常见应用(其实主要是针对AOP的),至于使用他们实现具体的功能,后续可能会独立写出来(谁知道呢) 执行的顺序: 项目初始化:filter:init()->filter:doFilter()->preHandle->Controller->postHandle->afterComplition ->destory() 过滤器(Filter),由servlet提供,拦截URL(其实是servlet),经过代理,执行想要的方法,最基本的使用是集成Filter类并重写方法,因为是从url层面上直接拦截,可以有很多用途,比如用于用户身份校验,比如某些页面需要有用户权限才能访问,就可以利用过滤器进行拦截,一些安全框架的鉴权本身也是过滤器的实现
过滤器、拦截器、监听器和AOP2020-03-01鱼鱼

MySQL tips

MySQL tips一些日常接触到的MySQL优化tips,比较散乱 假设有一个用户表,对于一句很简单的查询语句: 假设name与age字段均有单列索引,容易想到的是,MySQL应该会分别走两次索引,并将其结合起来,EXPLAIN也是如此,大多数时候MySQL会进行优化,我们可能会看到EXPLAIN的结果中有Using union或Using soft union,这是MySQL针对OR做了隐性的优化,但当SQL复杂或数据极端情况下,这一语句极容易变成全表扫描,偶尔使用联合索引可能解决问题,更多情况则是MySQL“昏了头”,即使OR条件均涉及数据条数不多,依旧没能在查询语句中使用索引,此时应调整为UNION语句(可以权衡一下重复及顺序是否有影响,可以使用更快的UNION ALL):
MySQL tips2021-01-13鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}