网络协议面面观:TCP/IP协议组,TCP与UDP
网络协议面面观:TCP/IP协议组,TCP与UDP日常中的网站应用交互绝大部分都是基于TCP/IP协议栈构建的,而TCP/IP就是通信常见的protocol(协议)组,是一类协议的简称,利用这篇文章总结一些常见的TCP/IP网络协议簇以及着重一下两个常见的传输层协议TCP和UDP,扫一下盲 OSI参考模型是ISO(国际标准化组织)指定的网络互联七层模型,与此对比的还有互联网界针对TCP/IP协议簇提出的四层模型 相比之下,OSI七层模型的应用面很窄,且是一种理论模型,TCP/IP则是一种实施标准 一般使用四层模型来表达协议归属,所以此处不详细介绍七层模型的内容,只是简单的与四层协议做对比,两者对比: 应用层 通过这个TCP/IP模型,整体的数据流向是发送方自顶向下然后在接收方自底向上的,即:

2020-03-03鱼鱼
Java中的数据结构
Java中的数据结构若不提到Jdk版本,本文中的源码都是基于jdk8版本分析的 注:有关同步集合(如Vector、ConcurrentHashMap、CopyOnWriteArrayList等)请移步博客 数组集合类,是Collection接口的子类,有序的Collection实现,包含ArrayList、LinkedList、Vector,其中Vector是线程安全的ArrayList,LinkedList是底层基于双向链表实现的List ArrayList的默认大小为10,扩容操作: 也就是1.5倍 不重复集合类,不能包含重复的元素,是Collection接口的子类,包含HashSet、LinkedHashSet、TreeSet,其实都是基于Map类的实现,所以详细了解请参阅Map类

2019-07-12鱼鱼
ELK实战(Ⅰ) 基于ELK整合分布式业务日志
ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;

2020-03-14鱼鱼
浅析RPC框架Thrift
浅析RPC框架ThriftThrift是由Facebook开发的 RPC远程调用的框架,使用独有的Thrift协议进行可跨语言的远程调用 有点类似protobuf 无论使用何种语言,首先要准备Thrift编译环境,可以去官网下载相应的Thrift执行文件,下文均以Windows为例 下载后可以选择性的配置环境变量,最终在shell中可执行Thrift 在项目中,预先准备好libthrift依赖,maven写法: 例如: 定义一个testService.thrift(idl文件名不重要),一般都会定义在resources的thrift文件夹下: 这里定义了两个方法,分别返回字符串和int类型,在thrift的idl中,对于变量的定义如下:

2022-03-04鱼鱼
有关Session的碎碎念-ban掉cookie之后
有关Session的碎碎念-ban掉cookie之后java web中, 用session来表示用户浏览器(客户端)与服务器建立的一次会话 通常用sessionId来标记一个session,在Java中,有很简单的方式直接获取sessionId; 但是sessionId并不是session的特性,实际上,sessionId是在客户端首次创建会话时将生成的sessionId存入cookie中,在之后的访问中直接读取这个id值 当客户端禁止了cookie行为后,SessionId在每次刷新页面时都会更新,利用id来表示会话也成为了妄想,此篇文章意在说明,如何操作能使SessionId能够独立于cookie使用 这种操作其实在shiro中已经被应用了,当我们进入登录页面中,url后会出现";jssionid=xxxxxx",将sessionid显示的标注在url中,可以使用:
![有关Session的碎碎念-ban掉cookie之后]()
2019-03-08鱼鱼
Java的SPI机制
Java的SPI机制SPI(Service Provider Interface) 是JDK内部提供的一种用于服务能力扩展的机制 在服务中通过不同的下沉方法实现能够加载不同的接口实现类,从而实现功能的热插拔 相比一些类似的设计模式(例如策略模式), SPI作为Java自带的实现特性,相对更加灵活和开放 我们常见的JDBC、日志框架slf4j、JavaMail、Spring等组件都基于 SPI实现(例如JDBC针对不同数据源的驱动) 之所以说区别于Java的一些设计模式,因为Java有一些实现能实现 SPI的动态加载 首先让我们定义 SPI对外提供抽象能力的接口类,这里为了便于理解展示包路径:

2024-10-14鱼鱼
常见树形结构
常见树形结构树形结构 相关术语 结点(Node):表示树中的数据元素,由数据项和数据元素之间的关系组成 在图中,共有10个结点 结点的度(Degree of Node):结点所拥有的子树的个数,在图中,结点A的度为3 树的度(Degree of Tree):树中各结点度的最大值 在图中,树的度为3 叶子结点(Leaf Node):度为0的结点,也叫终端结点 在图中,结点E、F、G、H、I、J都是叶子结点 分支结点(Branch Node):度不为0的结点,也叫非终端结点或内部结点 在图中,结点A、B、C、D是分支结点 孩子(Child):结点子树的根 在图中,结点B、C、D是结点A的孩子

2019-03-15鱼鱼
多线程应用提高(IV) 线程安全的集合类
多线程应用提高(IV) 线程安全的集合类在Java中的数据结构一篇中,列举了Java中一些常见的集合,此文主要梳理线程安全的相关集合 我们知道,当一个实例对象只能被一个线程访问时(线程私有),无论如何都不会有线程安全的问题,但在多线程的情境下,多个线程操作同一个对象时,可能会出现更新丢失、读写数据不同步、计数击穿等现象,此时这种操作就是非线程安全的 相应地,线程安全的集合有这样的特点:在多个线程操作同一集合时,能保证每一步操作都是安全的,与串行执行的结果一致,不会出现数据不同步等预料之外的问题 可以先看这个小例子Java-lab/ListT.java at master · fishstormX/Java-lab,我在里面解释了
![多线程应用提高(IV) 线程安全的集合类]()
2019-07-13鱼鱼
Kafka服务端集群原理
Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息

2022-03-10鱼鱼
Redis原理-源码解析:数据结构3 sorted set(zset))
Redis原理-源码解析:数据结构3 sorted set(zset))Redis的set数据结构在此不多讲,同Java中原理一样,set也可以理解为是hash剥离了value的数据结构,即同为dic 但是zset(有序集合)其实在底层原理上完全不同于set 所有原理实现基于Redis版本6.0.9 先看一下基本的指令实现,着重注意中文注解的地方 t_zset.c 可以看出zset的数据结构不是固定的,在其元素数或是元素的字符串过长时,其结构为zset;否则使用ziplist数据结构(像hash一样为了节省空间),二者的创建方法如下: ziplist的代码和原理可以参考我的博客Redis原理-源码解析:数据结构2 list-鱼鱼的Java小站,就是一个节省内存的压缩的链表结构

2021-02-28鱼鱼
IO与NIO
IO与NIO我们都知道IO流传输,其实IO模型有很多,例如BIO、NIO、AIO等,传统的IO都是同步的 IO为各种流操作 IO操作分类 I IO操作分类 II 其中,输入流可以为InputStream和Reader,分别为字节流和字符流,对应地,输出流为OutputStream和Writer,具体的使用在此不详述 NIO是IO模型中后推出的新IO模型 NIO并不一定是多线程的,但是NIO是多管道的,利用缓冲作为中间介质进行数据传输,运用的其实是多路复用技术,它恰恰是通过减少线程数量从而减少上下文的频繁切换,提高性能 Channel:通道,相当于一个连接,不能直接输出数据,只能与Buffer交换数据

2019-05-11鱼鱼
算法:动态规划解法及例题
算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌

2020-03-11鱼鱼