有关Session的碎碎念-ban掉cookie之后

有关Session的碎碎念-ban掉cookie之后java web中, 用session来表示用户浏览器(客户端)与服务器建立的一次会话 通常用sessionId来标记一个session,在Java中,有很简单的方式直接获取sessionId; 但是sessionId并不是session的特性,实际上,sessionId是在客户端首次创建会话时将生成的sessionId存入cookie中,在之后的访问中直接读取这个id值 当客户端禁止了cookie行为后,SessionId在每次刷新页面时都会更新,利用id来表示会话也成为了妄想,此篇文章意在说明,如何操作能使SessionId能够独立于cookie使用 这种操作其实在shiro中已经被应用了,当我们进入登录页面中,url后会出现";jssionid=xxxxxx",将sessionid显示的标注在url中,可以使用:
有关Session的碎碎念-ban掉cookie之后2019-03-08鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼

JVM的垃圾回收

JVM的垃圾回收此文介绍Java的基本垃圾回收机制 GC主要回收的是堆区,在堆中是有对象分代的,一个对象每“逃”过一次回收,对象代数便+1,新生对象被称作新生代(如果是占据内存较大的对象直接定义为老年代),当代数一定时对象将由新生代变为老年代 同时在Java1.7之前还有永久代,保存了一些静态变量 总之,内存回收只发生在新生代和老年代之间 除了分代,内存也有分区: 如图,是内存区域分配,其中Eden存储了新建的小对象,当回收时,将Eden中存活的对象转移到To Survivor区中,将From Survivor中的代数高(一般是15)的存活对象转移到老年代中,代数没达到阈值的存活对象转移到To Survivor中
JVM的垃圾回收2021-04-07鱼鱼

Kafka服务端集群原理

Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息
Kafka服务端集群原理2022-03-10鱼鱼

Spring MVC源码和设计思想2 HandlerMapping

Spring MVC源码和设计思想2 HandlerMapping系列传送门Spring MVC源码和设计思想1 DispatcherServlet-鱼鱼的博客 此篇篇幅很长,且慢慢道来 在之前一篇中,DispatchServlet的doDispatch()方法中有这么几行: 其中getHandler方法: handlerMappings是一个初始化过的List,通过它获取HandlerExecutionChain HandlerExecutionChain存储了一个Object(其实就是HandleAdapter)和一个拦截器(HandlerInterceptor)数组,在doDispatch方法中执行了applyPreHandle和applyPostHandle方法,方法就是分别迭代调用了拦截器数组的postHandle和preHandle,同样地,发生异常时的triggerAfterCompletion也映射到了afterCompletion方法
Spring MVC源码和设计思想2 HandlerMapping2019-06-12鱼鱼

算法:递归

算法:递归递归算法主要寻找: 终止条件:递归的尽头 单级递归的行为:在一次递归里要做的事情 返回值:每次迭代要return的东西 例如 首先,假定方法是已经实现的 终止条件为:当当前节点(传了空节点)或下一节点(传了单节点)为空,则无需反转返回当前节点 递归行为:假定之后的节点均已实现反转,则需要将已经反转的尾部的next变为当前节点,而当前节点由于是第一个节点,其next为null 此处注意在反转前需要先留存反转后的尾部; 返回值:返回反转后的头结点
算法:递归2020-06-24鱼鱼

JVM与GC

JVM与GCJMM,长下面这个样子: 其中,堆和栈区自然不做介绍了,主要介绍: 程序计数器:线程私有的,记录正在执行的字节码地址,换言之,它告诉我们某线程执行到了那里,分支、循环等也会依赖这个来执行,这一区域不会发生OOM问题 栈:就是正常所指的栈,每个方法被执行的时候都会同时创建一个栈帧(Stack Frame )用于存储局部变量表、操作栈、动态链接、方法出口等信息 每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程,这一区域会发生StackOverflow问题 堆:就是正常所指的堆,这里是GC的主要区域 方法区:线程私有的,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,运行时常量池也包含在里面
JVM与GC2019-03-28鱼鱼

MySQL tips

MySQL tips一些日常接触到的MySQL优化tips,比较散乱 假设有一个用户表,对于一句很简单的查询语句: 假设name与age字段均有单列索引,容易想到的是,MySQL应该会分别走两次索引,并将其结合起来,EXPLAIN也是如此,大多数时候MySQL会进行优化,我们可能会看到EXPLAIN的结果中有Using union或Using soft union,这是MySQL针对OR做了隐性的优化,但当SQL复杂或数据极端情况下,这一语句极容易变成全表扫描,偶尔使用联合索引可能解决问题,更多情况则是MySQL“昏了头”,即使OR条件均涉及数据条数不多,依旧没能在查询语句中使用索引,此时应调整为UNION语句(可以权衡一下重复及顺序是否有影响,可以使用更快的UNION ALL):
MySQL tips2021-01-13鱼鱼

Redis原理-源码解析:数据结构3 hash

Redis原理-源码解析:数据结构3 hash 所有原理实现基于Redis版本6.0.9 hash在Redis中可以认为是套了一层的string,当然,对hash来说没有数字类型 让我们依旧通过基本命令看看hash的基本数据结构实现 在set方法中我们看到了hash的初始创建过程,一个hash最开始是zipist 想要了解ziplist可以看Redis原理-源码解析:数据结构2 list ,是为节省内存而生的链表格式 所以其实在使用ziplist时其查询的时间复杂度不是遵循hash的近似O(1),而是O(n),但是在数据量不大时,这种性能的损失微乎其微,并且能预见到大多数使用hash的场景都不会存储过多的字段 所以优先使用了更节省内存空间的ziplist
Redis原理-源码解析:数据结构3 hash 2020-11-29鱼鱼

关于多数据源的那些事儿(萌新向)

关于多数据源的那些事儿(萌新向)在日常的JAVA后端开发中多数据源的应用场景并不少见,但对于刚刚接触springboot或是刚刚接触工程化开发的萌新来说却仿佛是一座不可逾越的高山,因为新手常常会局限于某些“固定的”项目配置,不知道如何配置?从哪里开始配置?以及什么能改什么不能改 这种现象在用惯了springboot便捷开发的老手中也很常见,众所周知,相比于spring的springboot简化了很多工程前置配置,虽然增加了工作效率却也使得开发人员失去了了解基础配置的机会 综上,本文主要讲解如何在springboot环境中,以一种最简单的、即起即用的、不依赖中间件和数据库切片的方式配置单一项目的多数据源 限于笔者能力有限,经验尚浅,若有描述不当之处,敬请批评指正
关于多数据源的那些事儿(萌新向)2019-06-28Agostino

ES快速入门(2)——Tokenizer、Reindex

ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
ES快速入门(2)——Tokenizer、Reindex2020-09-05鱼鱼

网络时延、异步IO、Pipeline

网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性
网络时延、异步IO、Pipeline2021-04-21鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}