阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解
阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解CAT是美团点评的一个基于Java开发的异常和性能监控项目,github地址:https://github.com/dianping/cat 本篇文章不是对CAT本身的源码拆解,而是基于本人依赖CAT client开发的代理项目进行拆解,但是并不会纰漏任何技术细节 CAT当前已有很多不同语言的Client,当然暂且是不 CAT本身是通过CAT client收集数据并上报至CAT server,server会进行并,共有六种常见数据格式:Transaction、Event、Problem、Metric、HeartBeat、调用链标记,其实如果不考虑复杂的处理(譬如Metric是可以基于指标生成折线图,Problem可以根据具体的异常类型追溯到相应的会话Track)除去Transaction剩余的数据格式都可以理解为特殊的Event

2020-07-19鱼鱼
常见树形结构
常见树形结构树形结构 相关术语 结点(Node):表示树中的数据元素,由数据项和数据元素之间的关系组成 在图中,共有10个结点 结点的度(Degree of Node):结点所拥有的子树的个数,在图中,结点A的度为3 树的度(Degree of Tree):树中各结点度的最大值 在图中,树的度为3 叶子结点(Leaf Node):度为0的结点,也叫终端结点 在图中,结点E、F、G、H、I、J都是叶子结点 分支结点(Branch Node):度不为0的结点,也叫非终端结点或内部结点 在图中,结点A、B、C、D是分支结点 孩子(Child):结点子树的根 在图中,结点B、C、D是结点A的孩子

2019-03-15鱼鱼
Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听
Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听查看源码的顺序就见仁见智了,比较普遍的做法是从IoC入手,了解容器注入的每一个环节,掌握大致的流程 由于使用的是Spring,所以在这里我们引入比较古老的xml配置文件进行bean的配置,首先定义一个bean: 配置描述bean的xml,核心只有一行: 这样一来就可以使用BeanFactory这个容器来注入bean并使用了: 本来有封装好的XmlBeanFactory,这一类现在已经被弃用了,所以采用了他的父类DefaultListableBeanFactory;当然,也可以使用更加方便和常用的ApplicationContext: 当然从xml文件读取bean的配置只是其中一种目前用的不多的加载方式,还有基于包扫描等加载bean的方法,此处仅为理解IoC的基本使用

2020-08-04鱼鱼
杂记:Spring与Springboot的本地化配置
杂记:Spring与Springboot的本地化配置利用这篇文章巩固一下Spring框架的基础,因为发现接触到的各种Spring的项目配置杂七杂八,从xml到注解,从properties到json到yaml,他们各有千秋,没有哪一种方式可以绝对取代另一种配置,所以在这里统一介绍一下各种配置方式的内容和利弊,以便随时查看 这并不是一篇Spring框架领域的教程,只是一种技术的补足或是一种投机取巧的学习手段 原始的Spring是采用纯xml进行配置的,我从github上找了一个规范经典的SSM项目,以下是一些常用的配置,从这里就可以看出xml的基本格式: ApplicationContext-test.xml jdbc.properties

2020-03-01鱼鱼
kasper的算法(从0到1)
kasper的算法(从0到1)https://javaguide.cn/cs-basics/data-structure/linear-data-structure.html https://javaguide.cn/cs-basics/algorithms/linkedlist-algorithm-problems.html 项目地址:https://github.com/labuladong/fucking-algorithm 在线文档地址:https://labuladong.gitee.io/algo/home/ http://fishmaple.cn/blog/topicBlog?topicId=7
![kasper的算法(从0到1)]()
2023-10-23kasper
分布式系统中的CAP原则与BASE原则
分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性

2019-09-29鱼鱼
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配

2020-11-16鱼鱼
安全框架的使用:Shiro
安全框架的使用:ShiroShiro与Sping Security均是java的安全框架,主要用于处理用户身份验证和授权 常见场景为用户系统登录 Shiro易用性强,提供了认证,授权,加密,和会话管理功能 Shiro的三大核心组件 : Subject:即当前用户概念,不止代表着某用户,也可以是进程或任何可能的事物 SecurityManager:即所有Subject的管理者,可以把他看做是一个Shiro框架的全局管理组件,用于调度各种Shiro框架的服务 作用类似于SpringMVC中的DispatcherServlet,用于拦截所有请求并进行处理 Realm:Realm是用户的信息认证器和用户的权限认证器,我们需要自己来实现Realm来自定义的管理我们自己系统内部的权限规则

2019-09-29鱼鱼
数据库的存储过程、触发器和一些语法
数据库的存储过程、触发器和一些语法本篇文章讲述基于MySQL的存储过程触发器和一些相关的语法 在数据库中,存储过程是指将复用度很高并且不需要通过程序进行预编译的的SQL语句预先写好存放起来(此处所指的为用户定义在数据库中的存储过程),在需要时直接通过call调用 先看一个例子(注意,这不是创建存储过程的语句): 其中使用了日期相关的函数,DATE_SUB(CURDATE(),INTERCAL 10 DAY)代表当前时间前推十天 这个存储过程作用是查出十天前的数据然后将其删除 MySQL默认的分隔符是" ; ",这样一来定义存储过程就会因为 ; 被打断,所以在定义存储过程前后需要修改分隔符,使用DELIMITER关键字跟随分隔符,实际创建存储过程语句为:
![数据库的存储过程、触发器和一些语法]()
2019-06-12鱼鱼
Java中的数据结构
Java中的数据结构若不提到Jdk版本,本文中的源码都是基于jdk8版本分析的 注:有关同步集合(如Vector、ConcurrentHashMap、CopyOnWriteArrayList等)请移步博客 数组集合类,是Collection接口的子类,有序的Collection实现,包含ArrayList、LinkedList、Vector,其中Vector是线程安全的ArrayList,LinkedList是底层基于双向链表实现的List ArrayList的默认大小为10,扩容操作: 也就是1.5倍 不重复集合类,不能包含重复的元素,是Collection接口的子类,包含HashSet、LinkedHashSet、TreeSet,其实都是基于Map类的实现,所以详细了解请参阅Map类

2019-07-12鱼鱼
数据库的瓶颈问题解决(主从分离)与多数据源切换
数据库的瓶颈问题解决(主从分离)与多数据源切换业务中,数据库的设计是极为重要的一环,在高并发的业务中,我们可以采用集群部署来缓解请求和逻辑处理的压力,但是在数据库的层面却不行,Oracle、Mysql等数据库的吞吐量很高,但是依旧有阈值,我们不能奢求单库能解决所有的问题,假设遇到了数据库的瓶颈问题,我们可以采用怎样的手段呢 想要数据库达到瓶颈(SQL执行效率明显变慢),其实是很困难的,我们在程序的设计中基本都会使用到数据库连接池控制数据连接,但当业务量提升之后,连接池若是经常达到饱和便容易产生阻塞,我们不得不开放更多的连接数,随之而来的便是数据库承载了更多的并发,解决问题的主要方式有三: 更细的划分业务逻辑,将高频业务表单独分离开来,并通过定期清理的方式减小查询的执行时间,将不同的数据库请求分发到不同服务器的不同库,可以一定程度下解决上文所述的问题,但是应以数据库的设计性为前提,绝对不能牺牲原有设计合理的数据结构将其进行拆分,得不偿失

2019-08-29鱼鱼
ELK实战(Ⅰ) 基于ELK整合分布式业务日志
ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;

2020-03-14鱼鱼