对多线程的执行效率探究——合理的任务并发拆分

对多线程的执行效率探究——合理的任务并发拆分通常,我们选择多线程执行任务有两个理由,一是复杂任务采用多线程处理能够在发生并发时让用户减少等待也能防止阻塞,一是充分利用空闲时间,提高任务处理的效率,就后者而言,此处探讨不考虑客户端并发是否有必要把一个任务拆分成多线程来处理 为了探究多线程的效率问题,我做了一个实验,将不同种类的任务分别用单线程和多线程执行,同时也试验了不同种类的锁机制 测试基于Java 8的版本,希望看到总结可以直接点击到文末 开启五个线程执行任务,设定了足够次数的循环输出,输出的数字和当前线程,利用System.currentTimeMillis()统计任务用时 (代码略)以下是相同任务在不同环境下执行多次的平均执行时间
对多线程的执行效率探究——合理的任务并发拆分2019-12-09鱼鱼

Spring MVC源码和设计思想2 HandlerMapping

Spring MVC源码和设计思想2 HandlerMapping系列传送门Spring MVC源码和设计思想1 DispatcherServlet-鱼鱼的博客 此篇篇幅很长,且慢慢道来 在之前一篇中,DispatchServlet的doDispatch()方法中有这么几行: 其中getHandler方法: handlerMappings是一个初始化过的List,通过它获取HandlerExecutionChain HandlerExecutionChain存储了一个Object(其实就是HandleAdapter)和一个拦截器(HandlerInterceptor)数组,在doDispatch方法中执行了applyPreHandle和applyPostHandle方法,方法就是分别迭代调用了拦截器数组的postHandle和preHandle,同样地,发生异常时的triggerAfterCompletion也映射到了afterCompletion方法
Spring MVC源码和设计思想2 HandlerMapping2019-06-12鱼鱼

PyCharm与python快速开发

PyCharm与python快速开发Python语言作为“胶水语言”,简单易学,开发周期快,功能和扩展性强大,类库丰富 只依赖一门Java并不适用于所有情况,譬如快速开发一次性脚本(修复数据),通过使用Python效率更高,本篇文章旨在介绍本人快速入门Python的一些tips 注意,一些Python的基本语法在此不予介绍,推荐前往廖雪峰的博客查看,博客基于Python3.8版本 关于编译器等配置内容参考PyCharm帮助文档 从Python官网下载Python并安装,配置环境变量,安装PyCharm(这里 我们使用它作为IDE),这里略过 pip是python的包管理与安装工具,当你安装python后,pip也会随之被安装
PyCharm与python快速开发2021-01-16鱼鱼

盘点redis中特殊的数据类型 HyperLogLog Bitmap

盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
盘点redis中特殊的数据类型 HyperLogLog Bitmap 2022-01-12鱼鱼

项目异常问题解决

项目异常问题解决这天 程序抛出了一个WARN日志: createSecureRandom Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [43,844] milliseconds. 这意味着SHA1PRNG算法导致项目启动多花费了43秒,这是基于SHA-1算法实现且保密性较强的伪随机数生成器 1.从tomcat层面上解决: 在catalina.sh中加入这么一行:-Djava.security.egd=file:/dev/./urandom 2.从java层面解决 打开$JAVA_PATH/jre/lib/security/java.security这个文件,将下面的内容:
项目异常问题解决2019-02-28鱼鱼

数据库的瓶颈问题解决(主从分离)与多数据源切换

数据库的瓶颈问题解决(主从分离)与多数据源切换业务中,数据库的设计是极为重要的一环,在高并发的业务中,我们可以采用集群部署来缓解请求和逻辑处理的压力,但是在数据库的层面却不行,Oracle、Mysql等数据库的吞吐量很高,但是依旧有阈值,我们不能奢求单库能解决所有的问题,假设遇到了数据库的瓶颈问题,我们可以采用怎样的手段呢 想要数据库达到瓶颈(SQL执行效率明显变慢),其实是很困难的,我们在程序的设计中基本都会使用到数据库连接池控制数据连接,但当业务量提升之后,连接池若是经常达到饱和便容易产生阻塞,我们不得不开放更多的连接数,随之而来的便是数据库承载了更多的并发,解决问题的主要方式有三: 更细的划分业务逻辑,将高频业务表单独分离开来,并通过定期清理的方式减小查询的执行时间,将不同的数据库请求分发到不同服务器的不同库,可以一定程度下解决上文所述的问题,但是应以数据库的设计性为前提,绝对不能牺牲原有设计合理的数据结构将其进行拆分,得不偿失
数据库的瓶颈问题解决(主从分离)与多数据源切换2019-08-29鱼鱼

Redis原理-源码解析:数据结构3 sorted set(zset))

Redis原理-源码解析:数据结构3 sorted set(zset))Redis的set数据结构在此不多讲,同Java中原理一样,set也可以理解为是hash剥离了value的数据结构,即同为dic 但是zset(有序集合)其实在底层原理上完全不同于set 所有原理实现基于Redis版本6.0.9 先看一下基本的指令实现,着重注意中文注解的地方 t_zset.c 可以看出zset的数据结构不是固定的,在其元素数或是元素的字符串过长时,其结构为zset;否则使用ziplist数据结构(像hash一样为了节省空间),二者的创建方法如下: ziplist的代码和原理可以参考我的博客Redis原理-源码解析:数据结构2 list-鱼鱼的Java小站,就是一个节省内存的压缩的链表结构
Redis原理-源码解析:数据结构3 sorted set(zset))2021-02-28鱼鱼

数据库的存储过程、触发器和一些语法

数据库的存储过程、触发器和一些语法本篇文章讲述基于MySQL的存储过程触发器和一些相关的语法 在数据库中,存储过程是指将复用度很高并且不需要通过程序进行预编译的的SQL语句预先写好存放起来(此处所指的为用户定义在数据库中的存储过程),在需要时直接通过call调用 先看一个例子(注意,这不是创建存储过程的语句): 其中使用了日期相关的函数,DATE_SUB(CURDATE(),INTERCAL 10 DAY)代表当前时间前推十天 这个存储过程作用是查出十天前的数据然后将其删除 MySQL默认的分隔符是" ; ",这样一来定义存储过程就会因为 ; 被打断,所以在定义存储过程前后需要修改分隔符,使用DELIMITER关键字跟随分隔符,实际创建存储过程语句为:
数据库的存储过程、触发器和一些语法2019-06-12鱼鱼

Java中的数据结构

Java中的数据结构若不提到Jdk版本,本文中的源码都是基于jdk8版本分析的 注:有关同步集合(如Vector、ConcurrentHashMap、CopyOnWriteArrayList等)请移步博客 数组集合类,是Collection接口的子类,有序的Collection实现,包含ArrayList、LinkedList、Vector,其中Vector是线程安全的ArrayList,LinkedList是底层基于双向链表实现的List ArrayList的默认大小为10,扩容操作: 也就是1.5倍 不重复集合类,不能包含重复的元素,是Collection接口的子类,包含HashSet、LinkedHashSet、TreeSet,其实都是基于Map类的实现,所以详细了解请参阅Map类
Java中的数据结构2019-07-12鱼鱼

Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证

Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证2020-11-16鱼鱼

扫盲——加密那些事

扫盲——加密那些事扫盲加密解密算法 日常开发中我们经常接触MD5算法,以此进行简单的文件完整性校验或者是后台密码验证,MD5是最常见也是最简单快捷的散列算法,常用于参数或文件完整性校验,譬如网络请求发起方与接收方分别对参数做MD5编码,一旦不一致便判断请求被篡改从而拒绝该请求,从而保证信息安全,编码后的字符串是编码前文本的一个简要梗概,因此它也被称作是信息摘要算法 这个算法的特点就是不可逆,只用于信息准确性和防篡改的校验,当然,MD5作为老牌的散列算法,很多经典的编码已经可以被反向解码出来(依靠正向的暴力穷举)以及被碰撞模仿(王小云院士团队的"破解"能够根据MD5编码后串码模拟原始消息,即使它可能与原信息不同),类似的还有SHA1,因此衍生了SHA224、SHA256、SHA512等更多安全的散列算法
扫盲——加密那些事2021-05-14鱼鱼

Spring MVC源码和设计思想1 DispatcherServlet

Spring MVC源码和设计思想1 DispatcherServlet此篇文章是个人通过阅览Spring MVC源码的学习过程记录,包含Spring MVC的关键细节源码设计和一些设计上的tips,更近似于一种意识流的记录方式,锚点设置可能也有些乱,零零散散的点我日后有时间会统一总结起来 Restful风格的Http有八种请求方式,除了最常使用的Get与Post还有Head、Put、Delete、Options、Trace、Connect 在Restful接口的设计中,请求方方式的语义性很强,我们时常用他约束接口请求的行为,请求类型的语义: OPTIONS获取服务器支持的HTTP请求方法; HEAD跟get很像,但是不返回响应体信息,用于检查对象是否存在,并获取包含在响应消息头中的信息
Spring MVC源码和设计思想1  DispatcherServlet2019-06-03鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}