Redis高级特性:事务和pipelined以及在RedisTemplate中的应用
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用Redis Pipelined是由Client提供的(是防止client端 阻塞的操作)一种请求redis的方式 Redis本身具有很高的吞吐量,因此性能最大的考察便是网络状况,如果应用到redis的网络状况不好,每次请求都将会出现轻微的 阻塞和延迟,这种延迟对于批量请求是很可怕的,譬如要进行数千次数据插入,或是批量获取数据时,我们就需要用到Pipelined Pipelined可以将多个请求无 阻塞的发出并按顺序将请求结果“打包”返回,这有点类似于并发请求,可以有效地利用等待结果的 阻塞时间 注意,Pipelined并不能保证原子性,即pipelined执行的内容可能会被其他客户端或是线程的指令"插队",若想要原子性操作,需要使用事务
![Redis高级特性:事务和pipelined以及在RedisTemplate中的应用]()
2020-06-21鱼鱼
空
空 -- ---------------------------- -- Dump Platform: mayfly-go -- Dump Time: 2026-02-13 10:38:10 -- Dump DB: summoner_war -- DB Dialect: mysql -- ---------------------------- -- ---------------------------- -- Table structure: monster_skill -- ---------------------------- DROP TABLE IF EXISTS `monster_skill`;
![空]()
2026-02-13鱼鱼
常见树形结构
常见树形结构树形结构 相关术语 结点(Node):表示树中的数据元素,由数据项和数据元素之间的关系组成 在图中,共有10个结点 结点的度(Degree of Node):结点所拥有的子树的个数,在图中,结点A的度为3 树的度(Degree of Tree):树中各结点度的最大值 在图中,树的度为3 叶子结点(Leaf Node):度为0的结点,也叫终端结点 在图中,结点E、F、G、H、I、J都是叶子结点 分支结点(Branch Node):度不为0的结点,也叫非终端结点或内部结点 在图中,结点A、B、C、D是分支结点 孩子(Child):结点子树的根 在图中,结点B、C、D是结点A的孩子

2019-03-15鱼鱼
Redis原理-源码解析:数据结构3 sorted set(zset))
Redis原理-源码解析:数据结构3 sorted set(zset))Redis的set数据结构在此不多讲,同Java中原理一样,set也可以理解为是hash剥离了value的数据结构,即同为dic 但是zset(有序集合)其实在底层原理上完全不同于set 所有原理实现基于Redis版本6.0.9 先看一下基本的指令实现,着重注意中文注解的地方 t_zset.c 可以看出zset的数据结构不是固定的,在其元素数或是元素的字符串过长时,其结构为zset;否则使用ziplist数据结构(像hash一样为了节省空间),二者的创建方法如下: ziplist的代码和原理可以参考我的博客Redis原理-源码解析:数据结构2 list-鱼鱼的Java小站,就是一个节省内存的压缩的链表结构

2021-02-28鱼鱼
DDD领域下的架构模式——CQRS架构
DDD领域下的架构模式——CQRS架构//TODO
![DDD领域下的架构模式——CQRS架构]()
2021-06-24鱼鱼
AI大模型定价对比
AI大模型定价对比https://open.bigmodel.cn/pricing 火山方舟也提供端点(GLM3 0.001) https://openai.com/ja-JP/api/pricing/ 出入价格不一样 官网和火山都有 另外有免费版本的

2024-12-18鱼鱼
基于Consul的服务注册与发现
基于Consul的服务注册与发现注:文章基于Consul1.6.0版本,部分版本可能会有误差 本文中项目集成部分采用Java语言 consul官网,服务注册/发现是微服务架构中不可或缺的重要组件,起初服务都是单节点的甚至是单体服务,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问(HttpClient/RestTemplate),直到后面出现了多个节点的分布式架构,起初的解决手段是在服务端负载均衡,同时在网关层收束接口,使不同的请求转发到对应不同端口上,这也是前后分离防止前端跨域的手段之一: 图中的B服务也可以是多节点,注册在nginx上面的 要命的是,nginx并不具有服务健康检查的功能,服务调用方在调用一个服务之前是无法知悉服务是否可用的,不考虑这一点分布式的架构高可用的目标就成了一个摆设,解决手段也很简单:对超时或是状态码异常的请求进行重试尝试,请求会被分发到其他可用节点,或者采用服务注册与发现机制察觉健康的服务

2020-01-10鱼鱼
对多线程的执行效率探究——合理的任务并发拆分
对多线程的执行效率探究——合理的任务并发拆分通常,我们选择多线程执行任务有两个理由,一是复杂任务采用多线程处理能够在发生并发时让用户减少等待也能防止阻塞,一是充分利用空闲时间,提高任务处理的效率,就后者而言,此处探讨不考虑客户端并发是否有必要把一个任务拆分成多线程来处理 为了探究多线程的效率问题,我做了一个实验,将不同种类的任务分别用单线程和多线程执行,同时也试验了不同种类的锁机制 测试基于Java 8的版本,希望看到总结可以直接点击到文末 开启五个线程执行任务,设定了足够次数的循环输出,输出的数字和当前线程,利用System.currentTimeMillis()统计任务用时 (代码略)以下是相同任务在不同环境下执行多次的平均执行时间

2019-12-09鱼鱼
关于多数据源的那些事儿(萌新向)
关于多数据源的那些事儿(萌新向)在日常的JAVA后端开发中多数据源的应用场景并不少见,但对于刚刚接触springboot或是刚刚接触工程化开发的萌新来说却仿佛是一座不可逾越的高山,因为新手常常会局限于某些“固定的”项目配置,不知道如何配置?从哪里开始配置?以及什么能改什么不能改 这种现象在用惯了springboot便捷开发的老手中也很常见,众所周知,相比于spring的springboot简化了很多工程前置配置,虽然增加了工作效率却也使得开发人员失去了了解基础配置的机会 综上,本文主要讲解如何在springboot环境中,以一种最简单的、即起即用的、不依赖中间件和数据库切片的方式配置单一项目的多数据源 限于笔者能力有限,经验尚浅,若有描述不当之处,敬请批评指正

2019-06-28Agostino
ELK实战(Ⅰ) 基于ELK整合分布式业务日志
ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;

2020-03-14鱼鱼
IO与NIO
IO与NIO我们都知道IO流传输,其实IO模型有很多,例如BIO、NIO、AIO等,传统的IO都是同步的 IO为各种流操作 IO操作分类 I IO操作分类 II 其中,输入流可以为InputStream和Reader,分别为字节流和字符流,对应地,输出流为OutputStream和Writer,具体的使用在此不详述 NIO是IO模型中后推出的新IO模型 NIO并不一定是多线程的,但是NIO是多管道的,利用缓冲作为中间介质进行数据传输,运用的其实是多路复用技术,它恰恰是通过减少线程数量从而减少上下文的频繁切换,提高性能 Channel:通道,相当于一个连接,不能直接输出数据,只能与Buffer交换数据

2019-05-11鱼鱼
多线程应用提高(IV) 线程安全的集合类
多线程应用提高(IV) 线程安全的集合类在Java中的数据结构一篇中,列举了Java中一些常见的集合,此文主要梳理线程安全的相关集合 我们知道,当一个实例对象只能被一个线程访问时(线程私有),无论如何都不会有线程安全的问题,但在多线程的情境下,多个线程操作同一个对象时,可能会出现更新丢失、读写数据不同步、计数击穿等现象,此时这种操作就是非线程安全的 相应地,线程安全的集合有这样的特点:在多个线程操作同一集合时,能保证每一步操作都是安全的,与串行执行的结果一致,不会出现数据不同步等预料之外的问题 可以先看这个小例子Java-lab/ListT.java at master · fishstormX/Java-lab,我在里面解释了
![多线程应用提高(IV) 线程安全的集合类]()
2019-07-13鱼鱼