算法1

算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高
算法12019-03-14Sherlock

数据库的存储过程、触发器和一些语法

数据库的存储过程、触发器和一些语法本篇文章讲述基于MySQL的存储过程触发器和一些相关的语法 在数据库中,存储过程是指将复用度很高并且不需要通过程序进行预编译的的SQL语句预先写好存放起来(此处所指的为用户定义在数据库中的存储过程),在需要时直接通过call调用 先看一个例子(注意,这不是创建存储过程的语句): 其中使用了日期相关的函数,DATE_SUB(CURDATE(),INTERCAL 10 DAY)代表当前时间前推十天 这个存储过程作用是查出十天前的数据然后将其删除 MySQL默认的分隔符是" ; ",这样一来定义存储过程就会因为 ; 被打断,所以在定义存储过程前后需要修改分隔符,使用DELIMITER关键字跟随分隔符,实际创建存储过程语句为:
数据库的存储过程、触发器和一些语法2019-06-12鱼鱼

Rocket MQ的基本应用

Rocket MQ的基本应用消息队列,常用于应用间通信 本篇文章基于RocketMQ官方文档 Topic:消息分类,依靠topic来定义消息类型 Tag:消息二级分类,可选,同个topic用不同的tag区分消息类别 Message : 泛指MQ所传送的消息体 Producer:消息生产者 Consumer:消息消费者 Name Server:有点类似于zookeeper,负责服务的注册与发现,维护Broker与Topic的映射关系 Broker:负责消息的存储与生产者消费者消息接收与分发,与Name Server建立长连接,保持心跳上传负责的topic信息 Producer:消息生产者,从Name Server获取Broker对应Topic映射关系,然后与Broker建立连接发送消息
Rocket MQ的基本应用2019-06-28鱼鱼

造轮子2 灵活运用反射

造轮子2 灵活运用反射//TODO
造轮子2 灵活运用反射2019-05-25鱼鱼

Spring MVC源码和设计思想3 拦截器HandlerInterceptor

Spring MVC源码和设计思想3 拦截器HandlerInterceptor系列的源码基于Java Spring 框架5.1.x版本 HandlerInterceptor是SpringMVC框架提供的独有拦截器,本身只是一个接口,提供了三个方法,方法作用情况我已标出: 有关方法执行的具体时机,可以参考Spring MVC源码和设计思想1 DispatcherServlet文中的代码 上面使用到了default关键字,default关键字是Java 8的新特性之一(之前只有用在switch中),通过default可以在接口中定义一个方法的方法体,从而使该方法不必被强制继承 Java8中也添加了static用于修饰接口方法 主要是为了考虑接口重复方法的设计,比如多个类继承与同一个接口并且需要定义相同的方法实现时,用过default或static可以避免产生重复代码
Spring MVC源码和设计思想3 拦截器HandlerInterceptor2019-06-09鱼鱼

基于Consul的服务注册与发现

基于Consul的服务注册与发现注:文章基于Consul1.6.0版本,部分版本可能会有误差 本文中项目集成部分采用Java语言 consul官网,服务注册/发现是微服务架构中不可或缺的重要组件,起初服务都是单节点的甚至是单体服务,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问(HttpClient/RestTemplate),直到后面出现了多个节点的分布式架构,起初的解决手段是在服务端负载均衡,同时在网关层收束接口,使不同的请求转发到对应不同端口上,这也是前后分离防止前端跨域的手段之一: 图中的B服务也可以是多节点,注册在nginx上面的 要命的是,nginx并不具有服务健康检查的功能,服务调用方在调用一个服务之前是无法知悉服务是否可用的,不考虑这一点分布式的架构高可用的目标就成了一个摆设,解决手段也很简单:对超时或是状态码异常的请求进行重试尝试,请求会被分发到其他可用节点,或者采用服务注册与发现机制察觉健康的服务
基于Consul的服务注册与发现2020-01-10鱼鱼

Consul API文档

Consul API文档这是一个记录Consul 常用API的文档,因为Consul的跨语言性,所以http API在Consul中尤为重要,此文档基于Consul版本1.6.0的v1 API,有其他的变化请参阅Consul官方API文档 Consul API采用经典的rest图谱Consul API版本只有一个版本,所以所有的前缀都为 /v1/,返回值以Json格式传输,可以添加pretty参数格式化Json,以本地部署为例,整体的baseUrl为127.0.0.1:8500/v1/ 获取代理成员列表和基本信息,类似于指令'consul members' 开启维护模式后,该代理节点将会被标注为不可用,可以用于上线前临时屏蔽node的服务
Consul API文档2019-12-01鱼鱼

多线程应用提高(III) 并发编程的艺术

多线程应用提高(III) 并发编程的艺术《并发编程的艺术》p36:JMM不保证64位的long型和double型变量的写操作具有原子性 面试中可能经常会被问到HashMap和HashTable的区别,其中最重要的就是前者并不是线程安全的,但其实在高并发的情形下,后者的效率低的不像话甚至不可用,所以在jdk7之后出现了线程高效且安全的ConcurrentHashMap 当并发严重时,某线程若是调用了同步方法,另外的线程将进入阻塞/轮询状态,既不能put也不能get,但ConcurrentHashMap是不同的,它采用了锁的分段技术,将数据分段存储,不同的数据持有不同的锁,这样可用性会大大高于HashTable,所以在实际开发中我们都用ConcurrentHashMap取代HashTable
多线程应用提高(III) 并发编程的艺术2019-06-18鱼鱼

网络协议面面观:TCP/IP协议组,TCP与UDP

网络协议面面观:TCP/IP协议组,TCP与UDP日常中的网站应用交互绝大部分都是基于TCP/IP协议栈构建的,而TCP/IP就是通信常见的protocol(协议)组,是一类协议的简称,利用这篇文章总结一些常见的TCP/IP网络协议簇以及着重一下两个常见的传输层协议TCP和UDP,扫一下盲 OSI参考模型是ISO(国际标准化组织)指定的网络互联七层模型,与此对比的还有互联网界针对TCP/IP协议簇提出的四层模型 相比之下,OSI七层模型的应用面很窄,且是一种理论模型,TCP/IP则是一种实施标准 一般使用四层模型来表达协议归属,所以此处不详细介绍七层模型的内容,只是简单的与四层协议做对比,两者对比: 应用层 通过这个TCP/IP模型,整体的数据流向是发送方自顶向下然后在接收方自底向上的,即:
网络协议面面观:TCP/IP协议组,TCP与UDP2020-03-03鱼鱼

多线程应用提高(IV) 线程安全的集合类

多线程应用提高(IV) 线程安全的集合类在Java中的数据结构一篇中,列举了Java中一些常见的集合,此文主要梳理线程安全的相关集合 我们知道,当一个实例对象只能被一个线程访问时(线程私有),无论如何都不会有线程安全的问题,但在多线程的情境下,多个线程操作同一个对象时,可能会出现更新丢失、读写数据不同步、计数击穿等现象,此时这种操作就是非线程安全的 相应地,线程安全的集合有这样的特点:在多个线程操作同一集合时,能保证每一步操作都是安全的,与串行执行的结果一致,不会出现数据不同步等预料之外的问题 可以先看这个小例子Java-lab/ListT.java at master · fishstormX/Java-lab,我在里面解释了
多线程应用提高(IV) 线程安全的集合类2019-07-13鱼鱼

Elasticsearch 入门

Elasticsearch 入门(注:本篇文章基于Elasticsearch7.7.0版本,由于版本的差异性造成的内容不一致我会尽量在文中标出,但是) Elasticsearch是基于Lucene扩展的全文搜索引擎,当我们有对大数据量的处理和搜索时,全文搜索引擎是最佳的选择,同时他提供了高扩展性、高可用性、RestFul风格的API和友好的分布式部署配置,在此我们不予详述 我们日常使用的数据库索引是数据库一种编排数据(逻辑上)从而加快查询的手段,我们暂且将这种索引方式称为正排索引,他通过对待搜索字符寻址从而找到对应的数据 但是这种索引方式对于模糊匹配会出现"断档"现象(模糊符号后的片段无法走索引查找),并且对于海量数据无论在存储上还是在查找上都略显吃力,于是在Elasticsearch中引入了倒排索引来加快查询速度
Elasticsearch 入门2020-03-06鱼鱼

算法:动态规划解法及例题

算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌
算法:动态规划解法及例题2020-03-11鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}