网络时延、异步IO、Pipeline

网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性
网络时延、异步IO、Pipeline2021-04-21鱼鱼

算法:深度优先搜索(DFS)

算法:深度优先搜索(DFS)在算法:广度优先搜索(BFS)(最短路径)中,我们提到了按照广度优先遍历的搜索方式,使用队列作为常规的搜索方式,与之相对应的为深度优先搜索(DFS) 如果说BFS对应着树结构的前中后序遍历 但是DFS相对解法较为多元一些,有些时候不得不使用递归进行求解 同时,有很多求解只是进行图的遍历,不关心是广度还是深度优先,其解都是相同的 在这里我们暂且不讨论的基于栈而是侧重基于递归的遍历实现 对于二叉树,最常见的遍历方式有前序(又称 先序)遍历、中序遍历、后序遍历、层次遍历 前中后序只为取得的值先后顺序不同,即递归有先后 依赖栈实现的的深度优先是前序遍历 以下是一个二叉树的前序遍历代码实现:
算法:深度优先搜索(DFS)2020-06-27鱼鱼

Rocket MQ的基本应用

Rocket MQ的基本应用消息队列,常用于应用间通信 本篇文章基于RocketMQ官方文档 Topic:消息分类,依靠topic来定义消息类型 Tag:消息二级分类,可选,同个topic用不同的tag区分消息类别 Message : 泛指MQ所传送的消息体 Producer:消息生产者 Consumer:消息消费者 Name Server:有点类似于zookeeper,负责服务的注册与发现,维护Broker与Topic的映射关系 Broker:负责消息的存储与生产者消费者消息接收与分发,与Name Server建立长连接,保持心跳上传负责的topic信息 Producer:消息生产者,从Name Server获取Broker对应Topic映射关系,然后与Broker建立连接发送消息
Rocket MQ的基本应用2019-06-28鱼鱼

分布式系统中的CAP原则与BASE原则

分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性
分布式系统中的CAP原则与BASE原则2019-09-29鱼鱼

Consul高级应用:多数据中心,模板与Client(Zuul)

Consul高级应用:多数据中心,模板与Client(Zuul)此文整理了Consul比较实用的高级功能:多数据中心,模板与维护模式 Consul提供了多数据中心联动的特性,目前看来多数据中心只是在查询阶段提现,各个数据中心的数据持久化和数据目录(k-v对)的更新不相干扰 也就是说,多数据中心的特性目前看来不能作为可用性的保障,当然 不排除可以手动热切换数据中心 最好判断是否使用多数据中心的情形是判断服务是否属于同一系统下,是否相同serviceId能提供相同的无状态服务,以下列举一些情景: 一个系统拥有多个域名的多套部署,提供版本一致的服务(建议使用多数据中心) 一个系统由多个服务器提供的不同服务提供(视服务具体情况,不建议使用多数据中心)
Consul高级应用:多数据中心,模板与Client(Zuul)2020-01-28鱼鱼

Java中的协程(虚拟线程)探究

Java中的协程(虚拟线程)探究在Java最新的LTS版本 21中,终于实装了协程这一特性 当然,在这些诸如python、golang等轻量级语言中被称为协程的东西,在Java中有个全新的代号——虚拟线程,为了将协程与线程做区分,在Java21中,原Thread被称之为平台线程 下文中,将统一使用线程/协程的方式称呼 我们都知道,Java中引入了线程的概念,区别于系统中的进程 作为并发执行的最小单元,在一定的条件下,使用多个线程同时运作可以有效提高程序的运转效率 而线程这一能力源于系统本身而并非JVM 之所以说是在一定条件下,是因为受限于机器配置情况(CPU的运作机制、核心数),线程的同时运作并不能线性的提升运行性能,单个cpu并不能同时处理多线程任务,实际的运作方式是基于时间片分片,各个线程抢占式执行代码,这样能减少一些无效的io等待(例如网络io、磁盘io实际是会阻塞等待io结果),同时在多核心场景下也能有效利用cpu
Java中的协程(虚拟线程)探究2024-10-28鱼鱼

常见树形结构

常见树形结构树形结构 相关术语 结点(Node):表示树中的数据元素,由数据项和数据元素之间的关系组成 在图中,共有10个结点 结点的度(Degree of Node):结点所拥有的子树的个数,在图中,结点A的度为3 树的度(Degree of Tree):树中各结点度的最大值 在图中,树的度为3 叶子结点(Leaf Node):度为0的结点,也叫终端结点 在图中,结点E、F、G、H、I、J都是叶子结点 分支结点(Branch Node):度不为0的结点,也叫非终端结点或内部结点 在图中,结点A、B、C、D是分支结点 孩子(Child):结点子树的根 在图中,结点B、C、D是结点A的孩子
常见树形结构2019-03-15鱼鱼

多线程应用提高(I) 多线程常见问题、常用方法和关键字

多线程应用提高(I) 多线程常见问题、常用方法和关键字我们一般熟识的创建多线程方式即为继承Thread类或是实现Runnable接口,重写run()方法,还有创建线程池实现 手动定义一个线程任务(作为内部类)的方法现在已经不被提倡,所以遇到可能存在并发的复杂任务时,一般采用线程池来实现 一些设计并发常用并且容易被混淆的方法们: static sleep() : Thread类的静态方法,阻塞当前正在线程,不释放锁; wait() : 当前线程暂停,并释放锁且暂时无法重新获得锁,必须绑定当前对象内容锁(如使用Synchronized的同步块),知道其他线程调用notify()/notifyAll()才有机会获得锁继续执行; yield() : 当前线程暂停,此时时间片分配给其他线程,但是不会分配给优先级更低的线程;
多线程应用提高(I) 多线程常见问题、常用方法和关键字2019-12-07鱼鱼

并发之AQS全解析

并发之AQS全解析我们知道juc(java.util.concurrent)包下有很多实用的类,提供了很多并发工具,例如线程池、原子类、并发工具、信号量工具、锁等,可以说基本实现都为悲观锁,底层原理基本都使用了AQS(AbstractQueuedSynchronizer),AQS不是一种概念,是并发中实打实的工具类 本篇文章针对AQS做解析 AQS是多线程访问共享资源的同步器框架 AQS的资源可以是独占的也可以是共享的 我们先来简单看一下它的使用方式和ApI(因为是抽象类,是不能直接使用的),下图是AQS的整体脉络 AQS核心就是一个状态值state,同时维护了一个线程的阻塞队列,队列的节点为有两种状态:SHARED(共享)和EXCLUSIVE(独占),节点状态有五种:
并发之AQS全解析2021-03-12鱼鱼

数据库的并发、锁机制与MVCC

数据库的并发、锁机制与MVCC在日常开发中,经常遇到数据库进行高并发操作的情况,但是我们处理并发一般都只在代码范畴而并不处理具体的数据库操作,这是因为数据库对基本的数据库操作做了锁处理,让我们可以忽略这一层的并发问题 详细可以参考Mysql的官方文档 注意:这一篇博客是针对MySQL数据库,且实用默认的 引擎InnoDb,使用其他数据库可能存在略微的差异 MySQL默认的数据库引擎InnoDB中Autocommit值为0(即自动提交事务)执行SQL语句的时候,每一条SQL语句都是一条单独的事务,所以并不存在并发的问题,数据库的锁机制已经做了很好的处理 但是当我们开启事务时,若不加处理,可能会产生一系列并发带来的问题
数据库的并发、锁机制与MVCC2021-01-24鱼鱼

Kafka服务端集群原理

Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息
Kafka服务端集群原理2022-03-10鱼鱼

算法:递归

算法:递归递归算法主要寻找: 终止条件:递归的尽头 单级递归的行为:在一次递归里要做的事情 返回值:每次迭代要return的东西 例如 首先,假定方法是已经实现的 终止条件为:当当前节点(传了空节点)或下一节点(传了单节点)为空,则无需反转返回当前节点 递归行为:假定之后的节点均已实现反转,则需要将已经反转的尾部的next变为当前节点,而当前节点由于是第一个节点,其next为null 此处注意在反转前需要先留存反转后的尾部; 返回值:返回反转后的头结点
算法:递归2020-06-24鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}