多线程应用提高(I) 多线程常见问题、常用方法和关键字
多线程应用提高(I) 多线程常见问题、常用方法和关键字我们一般熟识的创建多线程方式即为继承Thread类或是实现Runnable接口,重写run()方法,还有创建线程池实现 手动定义一个线程任务(作为内部类)的方法现在已经不被提倡,所以遇到可能存在并发的复杂任务时,一般采用线程池来实现 一些设计并发常用并且容易被混淆的方法们: static sleep() : Thread类的静态方法,阻塞当前正在线程,不释放锁; wait() : 当前线程暂停,并释放锁且暂时无法重新获得锁,必须绑定当前对象内容锁(如使用Synchronized的同步块),知道其他线程调用notify()/notifyAll()才有机会获得锁继续执行; yield() : 当前线程暂停,此时时间片分配给其他线程,但是不会分配给优先级更低的线程;
![多线程应用提高(I) 多线程常见问题、常用方法和关键字]()
2019-12-07鱼鱼
Netty
NettyNIO相比IO有诸多利处,但平常开发中若是直接使用原生NIO进行业务开发是很不可取的,否则将面临臃肿而晦涩难懂的代码 所以日常开发中我们会时常使用封装了NIO操作代码的Netty来实现NIO操作 Netty是一个异步事件驱动的网络应用框架,用于快速开发可维护的高性能服务器和客户端
![Netty]()
2019-05-11鱼鱼
盘点redis中特殊的数据类型 HyperLogLog Bitmap
盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
![盘点redis中特殊的数据类型 HyperLogLog Bitmap]()
2022-01-12鱼鱼
算法:深度优先搜索(DFS)
算法:深度优先搜索(DFS)在算法:广度优先搜索(BFS)(最短路径)中,我们提到了按照广度优先遍历的搜索方式,使用队列作为常规的搜索方式,与之相对应的为深度优先搜索(DFS) 如果说BFS对应着树结构的前中后序遍历 但是DFS相对解法较为多元一些,有些时候不得不使用递归进行求解 同时,有很多求解只是进行图的遍历,不关心是广度还是深度优先,其解都是相同的 在这里我们暂且不讨论的基于栈而是侧重基于递归的遍历实现 对于二叉树,最常见的遍历方式有前序(又称 先序)遍历、中序遍历、后序遍历、层次遍历 前中后序只为取得的值先后顺序不同,即递归有先后 依赖栈实现的的深度优先是前序遍历 以下是一个二叉树的前序遍历代码实现:
![算法:深度优先搜索(DFS)]()
2020-06-27鱼鱼
基于Consul的服务注册与发现
基于Consul的服务注册与发现注:文章基于Consul1.6.0版本,部分版本可能会有误差 本文中项目集成部分采用Java语言 consul官网,服务注册/发现是微服务架构中不可或缺的重要组件,起初服务都是单节点的甚至是单体服务,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问(HttpClient/RestTemplate),直到后面出现了多个节点的分布式架构,起初的解决手段是在服务端负载均衡,同时在网关层收束接口,使不同的请求转发到对应不同端口上,这也是前后分离防止前端跨域的手段之一: 图中的B服务也可以是多节点,注册在nginx上面的 要命的是,nginx并不具有服务健康检查的功能,服务调用方在调用一个服务之前是无法知悉服务是否可用的,不考虑这一点分布式的架构高可用的目标就成了一个摆设,解决手段也很简单:对超时或是状态码异常的请求进行重试尝试,请求会被分发到其他可用节点,或者采用服务注册与发现机制察觉健康的服务

2020-01-10鱼鱼
mysql前缀索引
mysql前缀索引有时候需要索引很长的字符列,这会让索引变得大且慢 通常可以索引开始的部分字符,这样可以大大节约索引空间,从而提高索引效率 但这样也会降低索引的选择性 前面已经说过,使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本 2.1因为前缀索引无法完全等于判断,只是前缀匹配,所以可能需要扫描的所以数会增加 2.2在特殊的查询里面 select id,email from SUser where email='zhangssxyz@xxx.com'; 前缀索引需要回到 id 索引再查一下,因为系统并不确定前缀索引的定义是否截断了完整信息 select count(distinct left(email,4))as L4,

2020-05-15yangwcn
常见树形结构
常见树形结构树形结构 相关术语 结点(Node):表示树中的数据元素,由数据项和数据元素之间的关系组成 在图中,共有10个结点 结点的度(Degree of Node):结点所拥有的子树的个数,在图中,结点A的度为3 树的度(Degree of Tree):树中各结点度的最大值 在图中,树的度为3 叶子结点(Leaf Node):度为0的结点,也叫终端结点 在图中,结点E、F、G、H、I、J都是叶子结点 分支结点(Branch Node):度不为0的结点,也叫非终端结点或内部结点 在图中,结点A、B、C、D是分支结点 孩子(Child):结点子树的根 在图中,结点B、C、D是结点A的孩子

2019-03-15鱼鱼
多线程应用提高(III) 并发编程的艺术
多线程应用提高(III) 并发编程的艺术《并发编程的艺术》p36:JMM不保证64位的long型和double型变量的写操作具有原子性 面试中可能经常会被问到HashMap和HashTable的区别,其中最重要的就是前者并不是线程安全的,但其实在高并发的情形下,后者的效率低的不像话甚至不可用,所以在jdk7之后出现了线程高效且安全的ConcurrentHashMap 当并发严重时,某线程若是调用了同步方法,另外的线程将进入阻塞/轮询状态,既不能put也不能get,但ConcurrentHashMap是不同的,它采用了锁的分段技术,将数据分段存储,不同的数据持有不同的锁,这样可用性会大大高于HashTable,所以在实际开发中我们都用ConcurrentHashMap取代HashTable
![多线程应用提高(III) 并发编程的艺术]()
2019-06-18鱼鱼
AI大模型定价对比
AI大模型定价对比https://open.bigmodel.cn/pricing 火山方舟也提供端点(GLM3 0.001) https://openai.com/ja-JP/api/pricing/ 出入价格不一样 官网和火山都有 另外有免费版本的

2024-12-18鱼鱼
数据库的并发、锁机制与MVCC
数据库的并发、锁机制与MVCC在日常开发中,经常遇到数据库进行高并发操作的情况,但是我们处理并发一般都只在代码范畴而并不处理具体的数据库操作,这是因为数据库对基本的数据库操作做了锁处理,让我们可以忽略这一层的并发问题 详细可以参考Mysql的官方文档 注意:这一篇博客是针对MySQL数据库,且实用默认的 引擎InnoDb,使用其他数据库可能存在略微的差异 MySQL默认的数据库引擎InnoDB中Autocommit值为0(即自动提交事务)执行SQL语句的时候,每一条SQL语句都是一条单独的事务,所以并不存在并发的问题,数据库的锁机制已经做了很好的处理 但是当我们开启事务时,若不加处理,可能会产生一系列并发带来的问题

2021-01-24鱼鱼
算法:递归
算法:递归递归算法主要寻找: 终止条件:递归的尽头 单级递归的行为:在一次递归里要做的事情 返回值:每次迭代要return的东西 例如 首先,假定方法是已经实现的 终止条件为:当当前节点(传了空节点)或下一节点(传了单节点)为空,则无需反转返回当前节点 递归行为:假定之后的节点均已实现反转,则需要将已经反转的尾部的next变为当前节点,而当前节点由于是第一个节点,其next为null 此处注意在反转前需要先留存反转后的尾部; 返回值:返回反转后的头结点
![算法:递归]()
2020-06-24鱼鱼
[Quick Start]RedisTemplate的bean手动配置
[Quick Start]RedisTemplate的bean手动配置 有时我们可能需要手动配置Redis的连接,例如动态修改或是从特殊的参数中获取,而不是使用SpringBoot的自有配置,此篇文章意在快速指引redis的手动配置 基于Spring项目和Jedis的底层,使用RedisTemplate; 通过Maven引入相关依赖,可以的话spring-data-redis选择2.0.0以上版本,较低版本需要的依赖: 如果使用了Spring-boot并且要使用较高的版本(例如在2.1.0后才有的某些API-putIfAbsent带有超时时间的版本),我们直接修改starter的版本是不够的,二者版本并不对称,我们需要去掉其中的redis依赖并单独引入 建议保持良好的依赖管理习惯,显式的移除依赖,而不是任其覆盖,如:
![[Quick Start]RedisTemplate的bean手动配置](/blog_cover/20200220/bc7458d39b07471f8559d5469418133f.png)
2020-02-24鱼鱼