Spring的事务
Spring的事务Spring事务将一系列操作绑定为具有原子性的操作,此篇文章讲基于Spring提供的声明式事务 MySQL的事务我们已经明白,Spring的事务是委派了ORM框架来解决相应的问题,在jdbc中,体现的就是在Mybatis框架中,体现的就是SqlSession的建立到提交 声明式事务:在方法或是实现类上加上以下注解: 其中一些常用参数: propagation:配置事务传播行为;(后面详细解读) isolation:事务隔离级别; timeout:超时时间; roolbackFor:导致事务回滚的异常类设置; readOnly:boolean,是否只读 有七种事务传播行为,用来决策当发生事务嵌套时的解决方案
![Spring的事务]()
2019-07-18鱼鱼
Spring MVC源码和设计思想序 综述
Spring MVC源码和设计思想序 综述Spring框架整体的流程:(图片引用请注明出处)

2019-06-05鱼鱼
网络协议面面观:TCP/IP协议组,TCP与UDP
网络协议面面观:TCP/IP协议组,TCP与UDP日常中的网站应用交互绝大部分都是基于TCP/IP协议栈构建的,而TCP/IP就是通信常见的protocol(协议)组,是一类协议的简称,利用这篇文章总结一些常见的TCP/IP网络协议簇以及着重一下两个常见的传输层协议TCP和UDP,扫一下盲 OSI参考模型是ISO(国际标准化组织)指定的网络互联七层模型,与此对比的还有互联网界针对TCP/IP协议簇提出的四层模型 相比之下,OSI七层模型的应用面很窄,且是一种理论模型,TCP/IP则是一种实施标准 一般使用四层模型来表达协议归属,所以此处不详细介绍七层模型的内容,只是简单的与四层协议做对比,两者对比: 应用层 通过这个TCP/IP模型,整体的数据流向是发送方自顶向下然后在接收方自底向上的,即:

2020-03-03鱼鱼
数据库的瓶颈问题解决(主从分离)与多数据源切换
数据库的瓶颈问题解决(主从分离)与多数据源切换业务中,数据库的设计是极为重要的一环,在高并发的业务中,我们可以采用集群部署来缓解请求和逻辑处理的压力,但是在数据库的层面却不行,Oracle、Mysql等数据库的吞吐量很高,但是依旧有阈值,我们不能奢求单库能解决所有的问题,假设遇到了数据库的瓶颈问题,我们可以采用怎样的手段呢 想要数据库达到瓶颈(SQL执行效率明显变慢),其实是很困难的,我们在程序的设计中基本都会使用到数据库连接池控制数据连接,但当业务量提升之后,连接池若是经常达到饱和便容易产生阻塞,我们不得不开放更多的连接数,随之而来的便是数据库承载了更多的并发,解决问题的主要方式有三: 更细的划分业务逻辑,将高频业务表单独分离开来,并通过定期清理的方式减小查询的执行时间,将不同的数据库请求分发到不同服务器的不同库,可以一定程度下解决上文所述的问题,但是应以数据库的设计性为前提,绝对不能牺牲原有设计合理的数据结构将其进行拆分,得不偿失

2019-08-29鱼鱼
常见树形结构
常见树形结构树形结构 相关术语 结点(Node):表示树中的数据元素,由数据项和数据元素之间的关系组成 在图中,共有10个结点 结点的度(Degree of Node):结点所拥有的子树的个数,在图中,结点A的度为3 树的度(Degree of Tree):树中各结点度的最大值 在图中,树的度为3 叶子结点(Leaf Node):度为0的结点,也叫终端结点 在图中,结点E、F、G、H、I、J都是叶子结点 分支结点(Branch Node):度不为0的结点,也叫非终端结点或内部结点 在图中,结点A、B、C、D是分支结点 孩子(Child):结点子树的根 在图中,结点B、C、D是结点A的孩子

2019-03-15鱼鱼
算法:深度优先搜索(DFS)
算法:深度优先搜索(DFS)在算法:广度优先搜索(BFS)(最短路径)中,我们提到了按照广度优先遍历的搜索方式,使用队列作为常规的搜索方式,与之相对应的为深度优先搜索(DFS) 如果说BFS对应着树结构的前中后序遍历 但是DFS相对解法较为多元一些,有些时候不得不使用递归进行求解 同时,有很多求解只是进行图的遍历,不关心是广度还是深度优先,其解都是相同的 在这里我们暂且不讨论的基于栈而是侧重基于递归的遍历实现 对于二叉树,最常见的遍历方式有前序(又称 先序)遍历、中序遍历、后序遍历、层次遍历 前中后序只为取得的值先后顺序不同,即递归有先后 依赖栈实现的的深度优先是前序遍历 以下是一个二叉树的前序遍历代码实现:
![算法:深度优先搜索(DFS)]()
2020-06-27鱼鱼
第一个Vue前端独立项目构建尝试(工程化)
第一个Vue前端独立项目构建尝试(工程化)开始我的第一个前端独立项目的构建 使用webPack、npm进行项目模块化构建 安装相关软件准备构建: VSCode npm(node) 查看版本 npm -v node -v 安装相关依赖(使用淘宝镜像): npm install -g cnpm --registry=http://registry.npm.taobao.org 安装vue-cli脚手架: npm install -g vue-cli 查看版本: vue --version 进入目录后新建vue工程: vue init webpack projectname 配置相关内容:

2019-05-04鱼鱼
Redis原理-源码解析:数据结构2 list
Redis原理-源码解析:数据结构2 list所有原理实现基于Redis版本6.0.9 Redis中的list采用的是链表,在开始前,我们先看看list的最基本指令实现 t-list.c 由此可知,Redis的List底层数据结构都是基于quickList的 这是list所依赖的数据结构: quicklist.h 我们注意到其是由quicklistNode所构成的链表,而其中的数据实则为zl(ziplist)或是bookmark,在大多时候quicklistNode都使用ziplist存储数据 在上文中lpush执行了一个插入方法quicklistPush,在quicklist.c中有他的实现: quicklist真正存储数据的结构是ziplist,所以倒不如说,在Redis中,list是一个由ziplist节点构成的链表

2020-11-28鱼鱼
浅析RPC框架Thrift
浅析RPC框架ThriftThrift是由Facebook开发的 RPC远程调用的框架,使用独有的Thrift协议进行可跨语言的远程调用 有点类似protobuf 无论使用何种语言,首先要准备Thrift编译环境,可以去官网下载相应的Thrift执行文件,下文均以Windows为例 下载后可以选择性的配置环境变量,最终在shell中可执行Thrift 在项目中,预先准备好libthrift依赖,maven写法: 例如: 定义一个testService.thrift(idl文件名不重要),一般都会定义在resources的thrift文件夹下: 这里定义了两个方法,分别返回字符串和int类型,在thrift的idl中,对于变量的定义如下:

2022-03-04鱼鱼
分布式系统中的CAP原则与BASE原则
分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性

2019-09-29鱼鱼
安全框架的使用:Shiro
安全框架的使用:ShiroShiro与Sping Security均是java的安全框架,主要用于处理用户身份验证和授权 常见场景为用户系统登录 Shiro易用性强,提供了认证,授权,加密,和会话管理功能 Shiro的三大核心组件 : Subject:即当前用户概念,不止代表着某用户,也可以是进程或任何可能的事物 SecurityManager:即所有Subject的管理者,可以把他看做是一个Shiro框架的全局管理组件,用于调度各种Shiro框架的服务 作用类似于SpringMVC中的DispatcherServlet,用于拦截所有请求并进行处理 Realm:Realm是用户的信息认证器和用户的权限认证器,我们需要自己来实现Realm来自定义的管理我们自己系统内部的权限规则

2019-09-29鱼鱼
算法:动态规划解法及例题
算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌

2020-03-11鱼鱼