浅谈锁机制、主流锁设计方案

浅谈锁机制、主流锁设计方案本文旨在探讨通用的锁机制实现逻辑,以Java中常见的锁实现为例 本文提到的锁,是指通过限制并发/并行访问所添加的安全措施,本质上是通过限制线程/进程同时更改数据或是读取数据与写入数据产生时序差从而造成数据问题 锁机制中,有一些常见特性: 可重入性 指同一线程/进程携带相同的标识可以反复多次加锁,每次加锁和释放锁对应的重入次数+1/-1; 读写锁/独享共享 是锁的不同运作模式,分为读写锁,读锁与写锁、写锁与写锁是互斥的,但多个线程/进程可以同时对一个逻辑添加读锁,独享共享是另一种叫法 公平性 锁分为 公平锁和非 公平锁, 公平锁指锁释放和获取的顺序严格按照索取的顺序,非 公平锁则是等待锁的对象共同进行锁释放机会的争抢
浅谈锁机制、主流锁设计方案2024-10-15鱼鱼

Spring MVC源码和设计思想3 拦截器HandlerInterceptor

Spring MVC源码和设计思想3 拦截器HandlerInterceptor系列的源码基于Java Spring 框架5.1.x版本 HandlerInterceptor是SpringMVC框架提供的独有拦截器,本身只是一个接口,提供了三个方法,方法作用情况我已标出: 有关方法执行的具体时机,可以参考Spring MVC源码和设计思想1 DispatcherServlet文中的代码 上面使用到了default关键字,default关键字是Java 8的新特性之一(之前只有用在switch中),通过default可以在接口中定义一个方法的方法体,从而使该方法不必被强制继承 Java8中也添加了static用于修饰接口方法 主要是为了考虑接口重复方法的设计,比如多个类继承与同一个接口并且需要定义相同的方法实现时,用过default或static可以避免产生重复代码
Spring MVC源码和设计思想3 拦截器HandlerInterceptor2019-06-09鱼鱼

ELK全家桶基本使用(I)文件收集Filebeat

ELK全家桶基本使用(I)文件收集FilebeatFilebeat是Elastic中的轻量文件收集系统,相比于功能更强悍的Logstash,当我们需求很单一,读取文件内容且对文件内容没有过多复杂处理时,最好使用FileBeat取代Logstash,以免造成不必要的内存开销 文档链接 Filebeat负责收集文件并发送给下游服务 核心行为包含输入、处理过滤和输出 当然也有集成好配置的模块,通过模块与Es和Kibana链接可以直接在Kibana上看到组件的可视化 同时不难看出Filebeat其实对数据库的支持不是很健壮 截止7.6版本,开源的Filebeat可支持以下几种消息输入类型: log 用得最多的输入类型; stdin 标准的输入,从process或是piepline读取(可理解为脚本运行通道直接输入),一旦配置了这种input方式,其他 input将不再生效文档地址;
ELK全家桶基本使用(I)文件收集Filebeat2020-03-16鱼鱼

JVM与GC

JVM与GCJMM,长下面这个样子: 其中,堆和栈区自然不做介绍了,主要介绍: 程序计数器:线程私有的,记录正在执行的字节码地址,换言之,它告诉我们某线程执行到了那里,分支、循环等也会依赖这个来执行,这一区域不会发生OOM问题 栈:就是正常所指的栈,每个方法被执行的时候都会同时创建一个栈帧(Stack Frame )用于存储局部变量表、操作栈、动态链接、方法出口等信息 每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程,这一区域会发生StackOverflow问题 堆:就是正常所指的堆,这里是GC的主要区域 方法区:线程私有的,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,运行时常量池也包含在里面
JVM与GC2019-03-28鱼鱼

Redis原理-源码解析:数据结构3 sorted set(zset))

Redis原理-源码解析:数据结构3 sorted set(zset))Redis的set数据结构在此不多讲,同Java中原理一样,set也可以理解为是hash剥离了value的数据结构,即同为dic 但是zset(有序集合)其实在底层原理上完全不同于set 所有原理实现基于Redis版本6.0.9 先看一下基本的指令实现,着重注意中文注解的地方 t_zset.c 可以看出zset的数据结构不是固定的,在其元素数或是元素的字符串过长时,其结构为zset;否则使用ziplist数据结构(像hash一样为了节省空间),二者的创建方法如下: ziplist的代码和原理可以参考我的博客Redis原理-源码解析:数据结构2 list-鱼鱼的Java小站,就是一个节省内存的压缩的链表结构
Redis原理-源码解析:数据结构3 sorted set(zset))2021-02-28鱼鱼

关于多数据源的那些事儿(萌新向)

关于多数据源的那些事儿(萌新向)在日常的JAVA后端开发中多数据源的应用场景并不少见,但对于刚刚接触springboot或是刚刚接触工程化开发的萌新来说却仿佛是一座不可逾越的高山,因为新手常常会局限于某些“固定的”项目配置,不知道如何配置?从哪里开始配置?以及什么能改什么不能改 这种现象在用惯了springboot便捷开发的老手中也很常见,众所周知,相比于spring的springboot简化了很多工程前置配置,虽然增加了工作效率却也使得开发人员失去了了解基础配置的机会 综上,本文主要讲解如何在springboot环境中,以一种最简单的、即起即用的、不依赖中间件和数据库切片的方式配置单一项目的多数据源 限于笔者能力有限,经验尚浅,若有描述不当之处,敬请批评指正
关于多数据源的那些事儿(萌新向)2019-06-28Agostino

盘点redis中特殊的数据类型 HyperLogLog Bitmap

盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
盘点redis中特殊的数据类型 HyperLogLog Bitmap 2022-01-12鱼鱼

数据库的瓶颈问题解决(主从分离)与多数据源切换

数据库的瓶颈问题解决(主从分离)与多数据源切换业务中,数据库的设计是极为重要的一环,在高并发的业务中,我们可以采用集群部署来缓解请求和逻辑处理的压力,但是在数据库的层面却不行,Oracle、Mysql等数据库的吞吐量很高,但是依旧有阈值,我们不能奢求单库能解决所有的问题,假设遇到了数据库的瓶颈问题,我们可以采用怎样的手段呢 想要数据库达到瓶颈(SQL执行效率明显变慢),其实是很困难的,我们在程序的设计中基本都会使用到数据库连接池控制数据连接,但当业务量提升之后,连接池若是经常达到饱和便容易产生阻塞,我们不得不开放更多的连接数,随之而来的便是数据库承载了更多的并发,解决问题的主要方式有三: 更细的划分业务逻辑,将高频业务表单独分离开来,并通过定期清理的方式减小查询的执行时间,将不同的数据库请求分发到不同服务器的不同库,可以一定程度下解决上文所述的问题,但是应以数据库的设计性为前提,绝对不能牺牲原有设计合理的数据结构将其进行拆分,得不偿失
数据库的瓶颈问题解决(主从分离)与多数据源切换2019-08-29鱼鱼

Rocket MQ的基本应用

Rocket MQ的基本应用消息队列,常用于应用间通信 本篇文章基于RocketMQ官方文档 Topic:消息分类,依靠topic来定义消息类型 Tag:消息二级分类,可选,同个topic用不同的tag区分消息类别 Message : 泛指MQ所传送的消息体 Producer:消息生产者 Consumer:消息消费者 Name Server:有点类似于zookeeper,负责服务的注册与发现,维护Broker与Topic的映射关系 Broker:负责消息的存储与生产者消费者消息接收与分发,与Name Server建立长连接,保持心跳上传负责的topic信息 Producer:消息生产者,从Name Server获取Broker对应Topic映射关系,然后与Broker建立连接发送消息
Rocket MQ的基本应用2019-06-28鱼鱼

多线程应用提高(III) 并发编程的艺术

多线程应用提高(III) 并发编程的艺术《并发编程的艺术》p36:JMM不保证64位的long型和double型变量的写操作具有原子性 面试中可能经常会被问到HashMap和HashTable的区别,其中最重要的就是前者并不是线程安全的,但其实在高并发的情形下,后者的效率低的不像话甚至不可用,所以在jdk7之后出现了线程高效且安全的ConcurrentHashMap 当并发严重时,某线程若是调用了同步方法,另外的线程将进入阻塞/轮询状态,既不能put也不能get,但ConcurrentHashMap是不同的,它采用了锁的分段技术,将数据分段存储,不同的数据持有不同的锁,这样可用性会大大高于HashTable,所以在实际开发中我们都用ConcurrentHashMap取代HashTable
多线程应用提高(III) 并发编程的艺术2019-06-18鱼鱼

使用RPC与Restful接口调用服务

使用RPC与Restful接口调用服务在SOA和微服务架构中,远程通信是无法避免的,最常用的远程通信有两种方式: restful的接口,使用Http通信 使用dubbo或是Spring Cloud组件进行 RPC协议远程调用,可选地使用socket通信 不同的人对 RPC调用会有不同的看法,甚至对rpc本身的理解都不甚相同,但我认为 RPC有两种倾向: 一为语义化的 RPC 没有统一的请求规范,数据格式在开发人员中很难达成一致,在使用传统Http调用时,交互的双方需要约定一份“API文档”以保证数据格式的唯一性,这样API格式本身就成为了一道大墙,耽误研发双方的时间 但如果服务间采用语义化 RPC进行交互,双方可能并不需要一份文档,只要一份约定好的代码,并以此作为双方的依赖,在请求时也仅仅是直接调用方法本身,如此强的语义性怎能让人不爱
使用RPC与Restful接口调用服务2021-01-13鱼鱼

网络时延、异步IO、Pipeline

网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性
网络时延、异步IO、Pipeline2021-04-21鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}