数据库的存储过程、触发器和一些语法
数据库的存储过程、触发器和一些语法本篇文章讲述基于MySQL的存储过程触发器和一些相关的语法 在数据库中,存储过程是指将复用度很高并且不需要通过程序进行预编译的的SQL语句预先写好存放起来(此处所指的为用户定义在数据库中的存储过程),在需要时直接通过call调用 先看一个例子(注意,这不是创建存储过程的语句): 其中使用了日期相关的函数,DATE_SUB(CURDATE(),INTERCAL 10 DAY)代表当前时间前推十天 这个存储过程作用是查出十天前的数据然后将其删除 MySQL默认的分隔符是" ; ",这样一来定义存储过程就会因为 ; 被打断,所以在定义存储过程前后需要修改分隔符,使用DELIMITER关键字跟随分隔符,实际创建存储过程语句为:
![数据库的存储过程、触发器和一些语法]()
2019-06-12鱼鱼
Consul高级应用:多数据中心,模板与Client(Zuul)
Consul高级应用:多数据中心,模板与Client(Zuul)此文整理了Consul比较实用的高级功能:多数据中心,模板与维护模式 Consul提供了多数据中心联动的特性,目前看来多数据中心只是在查询阶段提现,各个数据中心的数据持久化和数据目录(k-v对)的更新不相干扰 也就是说,多数据中心的特性目前看来不能作为可用性的保障,当然 不排除可以手动热切换数据中心 最好判断是否使用多数据中心的情形是判断服务是否属于同一系统下,是否相同serviceId能提供相同的无状态服务,以下列举一些情景: 一个系统拥有多个域名的多套部署,提供版本一致的服务(建议使用多数据中心) 一个系统由多个服务器提供的不同服务提供(视服务具体情况,不建议使用多数据中心)

2020-01-28鱼鱼
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配

2020-11-16鱼鱼
网络时延、异步IO、Pipeline
网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性

2021-04-21鱼鱼
Elasticsearch 入门
Elasticsearch 入门(注:本篇文章基于Elasticsearch7.7.0版本,由于版本的差异性造成的内容不一致我会尽量在文中标出,但是) Elasticsearch是基于Lucene扩展的全文搜索引擎,当我们有对大数据量的处理和搜索时,全文搜索引擎是最佳的选择,同时他提供了高扩展性、高可用性、RestFul风格的API和友好的分布式部署配置,在此我们不予详述 我们日常使用的数据库索引是数据库一种编排数据(逻辑上)从而加快查询的手段,我们暂且将这种索引方式称为正排索引,他通过对待搜索字符寻址从而找到对应的数据 但是这种索引方式对于模糊匹配会出现"断档"现象(模糊符号后的片段无法走索引查找),并且对于海量数据无论在存储上还是在查找上都略显吃力,于是在Elasticsearch中引入了倒排索引来加快查询速度

2020-03-06鱼鱼
分布式系统一致性的分类
分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功

2021-03-13鱼鱼
Redis原理-源码解析:数据结构3 sorted set(zset))
Redis原理-源码解析:数据结构3 sorted set(zset))Redis的set数据结构在此不多讲,同Java中原理一样,set也可以理解为是hash剥离了value的数据结构,即同为dic 但是zset(有序集合)其实在底层原理上完全不同于set 所有原理实现基于Redis版本6.0.9 先看一下基本的指令实现,着重注意中文注解的地方 t_zset.c 可以看出zset的数据结构不是固定的,在其元素数或是元素的字符串过长时,其结构为zset;否则使用ziplist数据结构(像hash一样为了节省空间),二者的创建方法如下: ziplist的代码和原理可以参考我的博客Redis原理-源码解析:数据结构2 list-鱼鱼的Java小站,就是一个节省内存的压缩的链表结构

2021-02-28鱼鱼
使用RPC与Restful接口调用服务
使用RPC与Restful接口调用服务在SOA和微服务架构中,远程通信是无法避免的,最常用的远程通信有两种方式: restful的接口,使用Http通信 使用dubbo或是Spring Cloud组件进行 RPC协议远程调用,可选地使用socket通信 不同的人对 RPC调用会有不同的看法,甚至对rpc本身的理解都不甚相同,但我认为 RPC有两种倾向: 一为语义化的 RPC 没有统一的请求规范,数据格式在开发人员中很难达成一致,在使用传统Http调用时,交互的双方需要约定一份“API文档”以保证数据格式的唯一性,这样API格式本身就成为了一道大墙,耽误研发双方的时间 但如果服务间采用语义化 RPC进行交互,双方可能并不需要一份文档,只要一份约定好的代码,并以此作为双方的依赖,在请求时也仅仅是直接调用方法本身,如此强的语义性怎能让人不爱

2021-01-13鱼鱼
算法:Trie(前缀树、字典树)
算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符

2021-01-19鱼鱼
Kafka服务端集群原理
Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息

2022-03-10鱼鱼
算法:动态规划解法及例题
算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌

2020-03-11鱼鱼
多线程应用提高(II) 线程池
多线程应用提高(II) 线程池项目中,当发生并行操作时,一般都会用到线程池处理多线程任务,线程池的规则类似于数据库连接池,在此不予赘述 jdk自带线程池,此处主要讲述Spring框架自带的线程池ThreadPoolTaskExecutor 通过实现Runnable和Callable接口实现一个线程任务,从而能放入Executor进行线程管理 其中,Callable可以理解为带有返回值的Runnable,并且Callable需要实现的方法不是run()而是call(),该方法返回一个泛型对象 当我们把一个需要返回值的线程任务放进线程池后,线程池会返回一个Future对象,借助该对象,我们可以调用get()方法获取线程的状态,调用get()会阻塞当前线程直到返回结果

2020-02-25鱼鱼