ELK实战(Ⅰ) 基于ELK整合分布式业务日志
ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;

2020-03-14鱼鱼
Java中的数据结构
Java中的数据结构若不提到Jdk版本,本文中的源码都是基于jdk8版本分析的 注:有关同步集合(如Vector、ConcurrentHashMap、CopyOnWriteArrayList等)请移步博客 数组集合类,是Collection接口的子类,有序的Collection实现,包含ArrayList、LinkedList、Vector,其中Vector是线程安全的ArrayList,LinkedList是底层基于双向链表实现的List ArrayList的默认大小为10,扩容操作: 也就是1.5倍 不重复集合类,不能包含重复的元素,是Collection接口的子类,包含HashSet、LinkedHashSet、TreeSet,其实都是基于Map类的实现,所以详细了解请参阅Map类

2019-07-12鱼鱼
Rocket MQ的基本应用
Rocket MQ的基本应用消息队列,常用于应用间通信 本篇文章基于RocketMQ官方文档 Topic:消息分类,依靠topic来定义消息类型 Tag:消息二级分类,可选,同个topic用不同的tag区分消息类别 Message : 泛指MQ所传送的消息体 Producer:消息生产者 Consumer:消息消费者 Name Server:有点类似于zookeeper,负责服务的注册与发现,维护Broker与Topic的映射关系 Broker:负责消息的存储与生产者消费者消息接收与分发,与Name Server建立长连接,保持心跳上传负责的topic信息 Producer:消息生产者,从Name Server获取Broker对应Topic映射关系,然后与Broker建立连接发送消息

2019-06-28鱼鱼
Java排坑指南(I)jmap jstack jstat等的使用
Java排坑指南(I)jmap jstack jstat等的使用运用一些Java自带的可执行jar可以从内存的角度更轻松的排除项目中的问题,我们可能会遇到一些不常见却相对很致命的问题,例如: 某些web项目CPU跑到了100%并且飙高不下(一般来说,web应用都为IO密集应用,不太可能出现cpu高占用的情况) 项目中线程出现阻滞、阻塞(网络请求响应速度明显变慢,甚至因为死锁彻底出现阻塞等) 极可能由内存泄漏引发的不明原因的 OOM(没有预兆的或是基础逻辑问题的内存溢出) 当以上问题发生时,通过代码或是日志其实很难定位到原因所在,因为这一般是基于环境或资源导致的全局性问题,通常很难定位,这时可以通过使用Java自带的性能调优jar包更便捷的定位问题(如果没有配置环境变量,可以在jdk的bin目录下找到他们的jar包)

2020-11-28鱼鱼
空
空 -- ---------------------------- -- Dump Platform: mayfly-go -- Dump Time: 2026-02-13 10:38:10 -- Dump DB: summoner_war -- DB Dialect: mysql -- ---------------------------- -- ---------------------------- -- Table structure: monster_skill -- ---------------------------- DROP TABLE IF EXISTS `monster_skill`;
![空]()
2026-02-13鱼鱼
ES快速入门(2)——Tokenizer、Reindex
ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
![ES快速入门(2)——Tokenizer、Reindex]()
2020-09-05鱼鱼
基于Consul的服务注册与发现
基于Consul的服务注册与发现注:文章基于Consul1.6.0版本,部分版本可能会有误差 本文中项目集成部分采用Java语言 consul官网,服务注册/发现是微服务架构中不可或缺的重要组件,起初服务都是单节点的甚至是单体服务,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问(HttpClient/RestTemplate),直到后面出现了多个节点的分布式架构,起初的解决手段是在服务端负载均衡,同时在网关层收束接口,使不同的请求转发到对应不同端口上,这也是前后分离防止前端跨域的手段之一: 图中的B服务也可以是多节点,注册在nginx上面的 要命的是,nginx并不具有服务健康检查的功能,服务调用方在调用一个服务之前是无法知悉服务是否可用的,不考虑这一点分布式的架构高可用的目标就成了一个摆设,解决手段也很简单:对超时或是状态码异常的请求进行重试尝试,请求会被分发到其他可用节点,或者采用服务注册与发现机制察觉健康的服务

2020-01-10鱼鱼
IO多路复用模型:select、poll、epoll对比
IO多路复用模型:select、poll、epoll对比我们平时提到的I/O几乎都是同步 阻塞模型,譬如网络请求的socket IO,在数据返回前,相应的线程或是进程将会一直 阻塞直到数据返回,比较直接的处理便是针对IO流一对一的监听,但在IO返回前,相应的系统资源会平白无故的浪费,这种处理方式会大大降低服务器的吞吐 如果我们用很少的线程来监听这些IO,就能实现对系统资源的更好利用,在相应的socket有数据返回时才去读取数据 这种方式被称作IO多路复用,在Linux系统中,实现IO多路复用的方式(从古老到新)有select、poll和epoll 现在很多中间件都使用epoll IO多路复用模型才因此有着很高的性能和吞吐 此处简单描述三种方式的实现和区别

2020-08-11鱼鱼
MySQL tips
MySQL tips一些日常接触到的MySQL优化tips,比较散乱 假设有一个用户表,对于一句很简单的查询语句: 假设name与age字段均有单列索引,容易想到的是,MySQL应该会分别走两次索引,并将其结合起来,EXPLAIN也是如此,大多数时候MySQL会进行优化,我们可能会看到EXPLAIN的结果中有Using union或Using soft union,这是MySQL针对OR做了隐性的优化,但当SQL复杂或数据极端情况下,这一语句极容易变成全表扫描,偶尔使用联合索引可能解决问题,更多情况则是MySQL“昏了头”,即使OR条件均涉及数据条数不多,依旧没能在查询语句中使用索引,此时应调整为UNION语句(可以权衡一下重复及顺序是否有影响,可以使用更快的UNION ALL):

2021-01-13鱼鱼
Spring MVC源码和设计思想2 HandlerMapping
Spring MVC源码和设计思想2 HandlerMapping系列传送门Spring MVC源码和设计思想1 DispatcherServlet-鱼鱼的博客 此篇篇幅很长,且慢慢道来 在之前一篇中,DispatchServlet的doDispatch()方法中有这么几行: 其中getHandler方法: handlerMappings是一个初始化过的List
,通过它获取HandlerExecutionChain HandlerExecutionChain存储了一个Object(其实就是HandleAdapter)和一个拦截器(HandlerInterceptor)数组,在doDispatch方法中执行了applyPreHandle和applyPostHandle方法,方法就是分别迭代调用了拦截器数组的postHandle和preHandle,同样地,发生异常时的triggerAfterCompletion也映射到了afterCompletion方法
2019-06-12鱼鱼
多线程应用提高(I) 多线程常见问题、常用方法和关键字
多线程应用提高(I) 多线程常见问题、常用方法和关键字我们一般熟识的创建多线程方式即为继承Thread类或是实现Runnable接口,重写run()方法,还有创建线程池实现 手动定义一个线程任务(作为内部类)的方法现在已经不被提倡,所以遇到可能存在并发的复杂任务时,一般采用线程池来实现 一些设计并发常用并且容易被混淆的方法们: static sleep() : Thread类的静态方法,阻塞当前正在线程,不释放锁; wait() : 当前线程暂停,并释放锁且暂时无法重新获得锁,必须绑定当前对象内容锁(如使用Synchronized的同步块),知道其他线程调用notify()/notifyAll()才有机会获得锁继续执行; yield() : 当前线程暂停,此时时间片分配给其他线程,但是不会分配给优先级更低的线程;
2019-12-07鱼鱼
对多线程的执行效率探究——合理的任务并发拆分
对多线程的执行效率探究——合理的任务并发拆分通常,我们选择多线程执行任务有两个理由,一是复杂任务采用多线程处理能够在发生并发时让用户减少等待也能防止阻塞,一是充分利用空闲时间,提高任务处理的效率,就后者而言,此处探讨不考虑客户端并发是否有必要把一个任务拆分成多线程来处理 为了探究多线程的效率问题,我做了一个实验,将不同种类的任务分别用单线程和多线程执行,同时也试验了不同种类的锁机制 测试基于Java 8的版本,希望看到总结可以直接点击到文末 开启五个线程执行任务,设定了足够次数的循环输出,输出的数字和当前线程,利用System.currentTimeMillis()统计任务用时 (代码略)以下是相同任务在不同环境下执行多次的平均执行时间
2019-12-09鱼鱼