浅析RPC框架Thrift

浅析RPC框架ThriftThrift是由Facebook开发的 RPC远程调用的框架,使用独有的Thrift协议进行可跨语言的远程调用 有点类似protobuf 无论使用何种语言,首先要准备Thrift编译环境,可以去官网下载相应的Thrift执行文件,下文均以Windows为例 下载后可以选择性的配置环境变量,最终在shell中可执行Thrift 在项目中,预先准备好libthrift依赖,maven写法: 例如: 定义一个testService.thrift(idl文件名不重要),一般都会定义在resources的thrift文件夹下: 这里定义了两个方法,分别返回字符串和int类型,在thrift的idl中,对于变量的定义如下:
浅析RPC框架Thrift2022-03-04鱼鱼

算法1

算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高
算法12019-03-14Sherlock

盘点redis中特殊的数据类型 HyperLogLog Bitmap

盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
盘点redis中特殊的数据类型 HyperLogLog Bitmap 2022-01-12鱼鱼

浅谈锁机制、主流锁设计方案

浅谈锁机制、主流锁设计方案本文旨在探讨通用的锁机制实现逻辑,以Java中常见的锁实现为例 本文提到的锁,是指通过限制并发/并行访问所添加的安全措施,本质上是通过限制线程/进程同时更改数据或是读取数据与写入数据产生时序差从而造成数据问题 锁机制中,有一些常见特性: 可重入性 指同一线程/进程携带相同的标识可以反复多次加锁,每次加锁和释放锁对应的重入次数+1/-1; 读写锁/独享共享 是锁的不同运作模式,分为读写锁,读锁与写锁、写锁与写锁是互斥的,但多个线程/进程可以同时对一个逻辑添加读锁,独享共享是另一种叫法 公平性 锁分为 公平锁和非 公平锁, 公平锁指锁释放和获取的顺序严格按照索取的顺序,非 公平锁则是等待锁的对象共同进行锁释放机会的争抢
浅谈锁机制、主流锁设计方案2024-10-15鱼鱼

Spring MVC源码和设计思想序 综述

Spring MVC源码和设计思想序 综述Spring框架整体的流程:(图片引用请注明出处)
Spring MVC源码和设计思想序 综述2019-06-05鱼鱼

IO多路复用模型:select、poll、epoll对比

IO多路复用模型:select、poll、epoll对比我们平时提到的I/O几乎都是同步 阻塞模型,譬如网络请求的socket IO,在数据返回前,相应的线程或是进程将会一直 阻塞直到数据返回,比较直接的处理便是针对IO流一对一的监听,但在IO返回前,相应的系统资源会平白无故的浪费,这种处理方式会大大降低服务器的吞吐 如果我们用很少的线程来监听这些IO,就能实现对系统资源的更好利用,在相应的socket有数据返回时才去读取数据 这种方式被称作IO多路复用,在Linux系统中,实现IO多路复用的方式(从古老到新)有select、poll和epoll 现在很多中间件都使用epoll IO多路复用模型才因此有着很高的性能和吞吐 此处简单描述三种方式的实现和区别
IO多路复用模型:select、poll、epoll对比2020-08-11鱼鱼

Spring的事务

Spring的事务Spring事务将一系列操作绑定为具有原子性的操作,此篇文章讲基于Spring提供的声明式事务 MySQL的事务我们已经明白,Spring的事务是委派了ORM框架来解决相应的问题,在jdbc中,体现的就是在Mybatis框架中,体现的就是SqlSession的建立到提交 声明式事务:在方法或是实现类上加上以下注解: 其中一些常用参数: propagation:配置事务传播行为;(后面详细解读) isolation:事务隔离级别; timeout:超时时间; roolbackFor:导致事务回滚的异常类设置; readOnly:boolean,是否只读 有七种事务传播行为,用来决策当发生事务嵌套时的解决方案
Spring的事务2019-07-18鱼鱼

Redis高级特性:事务和pipelined以及在RedisTemplate中的应用

Redis高级特性:事务和pipelined以及在RedisTemplate中的应用Redis Pipelined是由Client提供的(是防止client端 阻塞的操作)一种请求redis的方式 Redis本身具有很高的吞吐量,因此性能最大的考察便是网络状况,如果应用到redis的网络状况不好,每次请求都将会出现轻微的 阻塞和延迟,这种延迟对于批量请求是很可怕的,譬如要进行数千次数据插入,或是批量获取数据时,我们就需要用到Pipelined Pipelined可以将多个请求无 阻塞的发出并按顺序将请求结果“打包”返回,这有点类似于并发请求,可以有效地利用等待结果的 阻塞时间 注意,Pipelined并不能保证原子性,即pipelined执行的内容可能会被其他客户端或是线程的指令"插队",若想要原子性操作,需要使用事务
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用2020-06-21鱼鱼

Kafka服务端集群原理

Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息
Kafka服务端集群原理2022-03-10鱼鱼

网络时延、异步IO、Pipeline

网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性
网络时延、异步IO、Pipeline2021-04-21鱼鱼

Java排坑指南(I)jmap jstack jstat等的使用

Java排坑指南(I)jmap jstack jstat等的使用运用一些Java自带的可执行jar可以从内存的角度更轻松的排除项目中的问题,我们可能会遇到一些不常见却相对很致命的问题,例如: 某些web项目CPU跑到了100%并且飙高不下(一般来说,web应用都为IO密集应用,不太可能出现cpu高占用的情况) 项目中线程出现阻滞、阻塞(网络请求响应速度明显变慢,甚至因为死锁彻底出现阻塞等) 极可能由内存泄漏引发的不明原因的 OOM(没有预兆的或是基础逻辑问题的内存溢出) 当以上问题发生时,通过代码或是日志其实很难定位到原因所在,因为这一般是基于环境或资源导致的全局性问题,通常很难定位,这时可以通过使用Java自带的性能调优jar包更便捷的定位问题(如果没有配置环境变量,可以在jdk的bin目录下找到他们的jar包)
Java排坑指南(I)jmap jstack jstat等的使用2020-11-28鱼鱼

算法:广度优先搜索(BFS)(最短路径)

算法:广度优先搜索(BFS)(最短路径)我们先看一个案例: 遍历一个树结构,按层次输出树的节点内容,即:欲求 A B C D E F 实现方式便是从根节点(A)向下遍历,先获取A,其次是A的子节点B和C,其次是B的子节点D…… 这种遍历树结构或者图结构的方法被称作广度优先搜索(BFS),与之对应的先遍历到最下层子节点的是深度优先 BFS核心采用队列的数据结构,例如上面的树结构中,解法为: A进队列->A出队列 B、C进队列->B出队列 D进队列 ->C出队列 E、F进队列-> D、E、F出队列 如果想要区分层次边缘,使用count参数即可 解法步骤(蓝色部分为已经处理完的节点):
算法:广度优先搜索(BFS)(最短路径)2020-06-05鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}