什么是web服务器?什么是web应用服务器?容器、以及服务器概念的区分(萌新向)

什么是web服务器?什么是web应用服务器?容器、以及服务器概念的区分(萌新向)本文主要是为了帮助萌新理解在web开发时遇到的关于web工作原理的疑问,由于本人水平十分有限,所以本文仅作为一般性参考,如有错误,欢迎批评指正OVO 首先说明的是,我们所谓的web服务器并不是物理上的服务器,而是建立在物理服务器上的一个web应用的运行环境,是一个软件服务器 这就好比前后端分离开发时,后端模块在物理服务器上的JVM,前端也需要一个“运行环境”进行工作,那么web服务器端概念就应运而生了,大概就好比下图 上图中拥有VUE经典的原谅色的web服务器就是我们前端运行的地方,可见web服务器的主要作用是给前端一个合理的运行环境,其实不只是看起来那么简单,web服务器还要处理代理、反向代理、跨域、并支持并发等等
什么是web服务器?什么是web应用服务器?容器、以及服务器概念的区分(萌新向)2019-06-16Agostino

Redis高级特性:事务和pipelined以及在RedisTemplate中的应用

Redis高级特性:事务和pipelined以及在RedisTemplate中的应用Redis Pipelined是由Client提供的(是防止client端 阻塞的操作)一种请求redis的方式 Redis本身具有很高的吞吐量,因此性能最大的考察便是网络状况,如果应用到redis的网络状况不好,每次请求都将会出现轻微的 阻塞和延迟,这种延迟对于批量请求是很可怕的,譬如要进行数千次数据插入,或是批量获取数据时,我们就需要用到Pipelined Pipelined可以将多个请求无 阻塞的发出并按顺序将请求结果“打包”返回,这有点类似于并发请求,可以有效地利用等待结果的 阻塞时间 注意,Pipelined并不能保证原子性,即pipelined执行的内容可能会被其他客户端或是线程的指令"插队",若想要原子性操作,需要使用事务
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用2020-06-21鱼鱼

算法:广度优先搜索(BFS)(最短路径)

算法:广度优先搜索(BFS)(最短路径)我们先看一个案例: 遍历一个树结构,按层次输出树的节点内容,即:欲求 A B C D E F 实现方式便是从根节点(A)向下遍历,先获取A,其次是A的子节点B和C,其次是B的子节点D…… 这种遍历树结构或者图结构的方法被称作广度优先搜索(BFS),与之对应的先遍历到最下层子节点的是深度优先 BFS核心采用队列的数据结构,例如上面的树结构中,解法为: A进队列->A出队列 B、C进队列->B出队列 D进队列 ->C出队列 E、F进队列-> D、E、F出队列 如果想要区分层次边缘,使用count参数即可 解法步骤(蓝色部分为已经处理完的节点):
算法:广度优先搜索(BFS)(最短路径)2020-06-05鱼鱼

Java排坑指南(I)jmap jstack jstat等的使用

Java排坑指南(I)jmap jstack jstat等的使用运用一些Java自带的可执行jar可以从内存的角度更轻松的排除项目中的问题,我们可能会遇到一些不常见却相对很致命的问题,例如: 某些web项目CPU跑到了100%并且飙高不下(一般来说,web应用都为IO密集应用,不太可能出现cpu高占用的情况) 项目中线程出现阻滞、阻塞(网络请求响应速度明显变慢,甚至因为死锁彻底出现阻塞等) 极可能由内存泄漏引发的不明原因的 OOM(没有预兆的或是基础逻辑问题的内存溢出) 当以上问题发生时,通过代码或是日志其实很难定位到原因所在,因为这一般是基于环境或资源导致的全局性问题,通常很难定位,这时可以通过使用Java自带的性能调优jar包更便捷的定位问题(如果没有配置环境变量,可以在jdk的bin目录下找到他们的jar包)
Java排坑指南(I)jmap jstack jstat等的使用2020-11-28鱼鱼

MYSQL的索引、引擎的实现原理和应用

MYSQL的索引、引擎的实现原理和应用本篇主要介绍数据库MySQL的索引实现原理,包括B+ Tree的原理,顺带提到了数据库的常用引擎 我们常见的数据库引擎就是InnoDB,还有另外一个常见一个引擎叫做MyISAM,这里着重介绍着两个引擎,执行show engines,可见MySQL所有的引擎如下: InnoDB采用行级锁,不会记录表中的数据个数,支持外键,高并发下使用事务的首选引擎,也是5.5之后MySQL的默认引擎(之前采用MyISAM),可以通过bin-log日志回滚数据,所以它比较适合处理数据量大的数据 PS:InnoDB最初不支持全文索引,在MySQL 5.6版本后添加了支持 MyISAM跟InnoDB截然相反,它采用表锁,记录了表的条目数,SELECT COUNT可以直接查看表中数据个数,支持FULLTEXT索引,不支持外键和事务,不能进行数据恢复操作,他比较适合频繁插入的数据,或是读操作远大于写操作时
MYSQL的索引、引擎的实现原理和应用2019-09-15鱼鱼

kasper的算法(从0到1)

kasper的算法(从0到1)https://javaguide.cn/cs-basics/data-structure/linear-data-structure.html https://javaguide.cn/cs-basics/algorithms/linkedlist-algorithm-problems.html 项目地址:https://github.com/labuladong/fucking-algorithm 在线文档地址:https://labuladong.gitee.io/algo/home/ http://fishmaple.cn/blog/topicBlog?topicId=7
kasper的算法(从0到1)2023-10-23kasper

PyCharm与python快速开发

PyCharm与python快速开发Python语言作为“胶水语言”,简单易学,开发周期快,功能和扩展性强大,类库丰富 只依赖一门Java并不适用于所有情况,譬如快速开发一次性脚本(修复数据),通过使用Python效率更高,本篇文章旨在介绍本人快速入门Python的一些tips 注意,一些Python的基本语法在此不予介绍,推荐前往廖雪峰的博客查看,博客基于Python3.8版本 关于编译器等配置内容参考PyCharm帮助文档 从Python官网下载Python并安装,配置环境变量,安装PyCharm(这里 我们使用它作为IDE),这里略过 pip是python的包管理与安装工具,当你安装python后,pip也会随之被安装
PyCharm与python快速开发2021-01-16鱼鱼

Redis原理-源码解析:数据结构3 hash

Redis原理-源码解析:数据结构3 hash 所有原理实现基于Redis版本6.0.9 hash在Redis中可以认为是套了一层的string,当然,对hash来说没有数字类型 让我们依旧通过基本命令看看hash的基本数据结构实现 在set方法中我们看到了hash的初始创建过程,一个hash最开始是zipist 想要了解ziplist可以看Redis原理-源码解析:数据结构2 list ,是为节省内存而生的链表格式 所以其实在使用ziplist时其查询的时间复杂度不是遵循hash的近似O(1),而是O(n),但是在数据量不大时,这种性能的损失微乎其微,并且能预见到大多数使用hash的场景都不会存储过多的字段 所以优先使用了更节省内存空间的ziplist
Redis原理-源码解析:数据结构3 hash 2020-11-29鱼鱼

网络协议面面观:TCP/IP协议组,TCP与UDP

网络协议面面观:TCP/IP协议组,TCP与UDP日常中的网站应用交互绝大部分都是基于TCP/IP协议栈构建的,而TCP/IP就是通信常见的protocol(协议)组,是一类协议的简称,利用这篇文章总结一些常见的TCP/IP网络协议簇以及着重一下两个常见的传输层协议TCP和UDP,扫一下盲 OSI参考模型是ISO(国际标准化组织)指定的网络互联七层模型,与此对比的还有互联网界针对TCP/IP协议簇提出的四层模型 相比之下,OSI七层模型的应用面很窄,且是一种理论模型,TCP/IP则是一种实施标准 一般使用四层模型来表达协议归属,所以此处不详细介绍七层模型的内容,只是简单的与四层协议做对比,两者对比: 应用层 通过这个TCP/IP模型,整体的数据流向是发送方自顶向下然后在接收方自底向上的,即:
网络协议面面观:TCP/IP协议组,TCP与UDP2020-03-03鱼鱼

关于多数据源的那些事儿(萌新向)

关于多数据源的那些事儿(萌新向)在日常的JAVA后端开发中多数据源的应用场景并不少见,但对于刚刚接触springboot或是刚刚接触工程化开发的萌新来说却仿佛是一座不可逾越的高山,因为新手常常会局限于某些“固定的”项目配置,不知道如何配置?从哪里开始配置?以及什么能改什么不能改 这种现象在用惯了springboot便捷开发的老手中也很常见,众所周知,相比于spring的springboot简化了很多工程前置配置,虽然增加了工作效率却也使得开发人员失去了了解基础配置的机会 综上,本文主要讲解如何在springboot环境中,以一种最简单的、即起即用的、不依赖中间件和数据库切片的方式配置单一项目的多数据源 限于笔者能力有限,经验尚浅,若有描述不当之处,敬请批评指正
关于多数据源的那些事儿(萌新向)2019-06-28Agostino

Linux常见指令集和使用技巧(持续更新)

Linux常见指令集和使用技巧(持续更新)目前是一步一步记录用到了的Linux指令 | 管道,将符号前的指令输出作为符号后的指令输入 > 将正常输出重定向(比如指令打印内容输出到文件) >> 将正常输出追加重定向(区别与上面的覆盖,这个指令对于已经存在的文件会追加内容) & 后台执行 && 前面的指令执行完毕才执行后面的指令 || 前面的指令执行出错才执行后面的指令 ls 显示目录下的文件目录或者列出文件信息 ll 属于ls,列出目录下的所有文件信息 cd 进入目录 pwd 显示当前目录的绝对路径 mkdir 创建目录 rm 删除目录(慎) mv 移动目录 即文件的打包安装,对于不同的Linux系统使用的工具有所不同,此处使用ubuntu系统,利用apt工具进行打包
Linux常见指令集和使用技巧(持续更新)2019-09-09鱼鱼

算法:Trie(前缀树、字典树)

算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符
算法:Trie(前缀树、字典树)2021-01-19鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}