PyCharm与python快速开发
PyCharm与python快速开发Python语言作为“胶水语言”,简单易学,开发周期快,功能和扩展性强大,类库丰富 只依赖一门Java并不适用于所有情况,譬如快速开发一次性脚本(修复数据),通过使用Python效率更高,本篇文章旨在介绍本人快速入门Python的一些tips 注意,一些Python的基本语法在此不予介绍,推荐前往廖雪峰的博客查看,博客基于Python3.8版本 关于编译器等配置内容参考PyCharm帮助文档 从Python官网下载Python并安装,配置环境变量,安装PyCharm(这里 我们使用它作为IDE),这里略过 pip是python的包管理与安装工具,当你安装python后,pip也会随之被安装

2021-01-16鱼鱼
杂记:Spring与Springboot的本地化配置
杂记:Spring与Springboot的本地化配置利用这篇文章巩固一下Spring框架的基础,因为发现接触到的各种Spring的项目配置杂七杂八,从xml到注解,从properties到json到yaml,他们各有千秋,没有哪一种方式可以绝对取代另一种配置,所以在这里统一介绍一下各种配置方式的内容和利弊,以便随时查看 这并不是一篇Spring框架领域的教程,只是一种技术的补足或是一种投机取巧的学习手段 原始的Spring是采用纯xml进行配置的,我从github上找了一个规范经典的SSM项目,以下是一些常用的配置,从这里就可以看出xml的基本格式: ApplicationContext-test.xml jdbc.properties

2020-03-01鱼鱼
动态路由数据源(多租户)解决方案
动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)

2021-01-07鱼鱼
Linux常见指令集和使用技巧(持续更新)
Linux常见指令集和使用技巧(持续更新)目前是一步一步记录用到了的Linux指令 | 管道,将符号前的指令输出作为符号后的指令输入 > 将正常输出重定向(比如指令打印内容输出到文件) >> 将正常输出追加重定向(区别与上面的覆盖,这个指令对于已经存在的文件会追加内容) & 后台执行 && 前面的指令执行完毕才执行后面的指令 || 前面的指令执行出错才执行后面的指令 ls 显示目录下的文件目录或者列出文件信息 ll 属于ls,列出目录下的所有文件信息 cd 进入目录 pwd 显示当前目录的绝对路径 mkdir 创建目录 rm 删除目录(慎) mv 移动目录 即文件的打包安装,对于不同的Linux系统使用的工具有所不同,此处使用ubuntu系统,利用apt工具进行打包

2019-09-09鱼鱼
MySQL tips
MySQL tips一些日常接触到的MySQL优化tips,比较散乱 假设有一个用户表,对于一句很简单的查询语句: 假设name与age字段均有单列索引,容易想到的是,MySQL应该会分别走两次索引,并将其结合起来,EXPLAIN也是如此,大多数时候MySQL会进行优化,我们可能会看到EXPLAIN的结果中有Using union或Using soft union,这是MySQL针对OR做了隐性的优化,但当SQL复杂或数据极端情况下,这一语句极容易变成全表扫描,偶尔使用联合索引可能解决问题,更多情况则是MySQL“昏了头”,即使OR条件均涉及数据条数不多,依旧没能在查询语句中使用索引,此时应调整为UNION语句(可以权衡一下重复及顺序是否有影响,可以使用更快的UNION ALL):

2021-01-13鱼鱼
造轮子1 注解管理
造轮子1 注解管理使用public @interface xxx{}可以自定义一个注解,在注解上面定义的注解叫做元注解 以下代码取自开源API文档生成项目Swagger: 在注解中也可以使用注解,我们称这些注解为元注解,上面代码中使用了一些比较常见的元注解 @Target({ElementType.TYPE})用于定义注解的使用范围,常见的包含 TYPE:类、接口、枚举 FIELD:字段声明 METHOD:方法声明 PARAMTER:参数声明 CONSTRUACTOR:构造函数声明 LOCAL_VARIABLE:局部变量声明 ANNOTATION_TYPE:其他注解声明 PACKAGE:包声明(代码中的第一行 声明package的时候)
![造轮子1 注解管理]()
2019-05-25鱼鱼
算法:深度优先搜索(DFS)
算法:深度优先搜索(DFS)在算法:广度优先搜索(BFS)(最短路径)中,我们提到了按照广度优先遍历的搜索方式,使用队列作为常规的搜索方式,与之相对应的为深度优先搜索(DFS) 如果说BFS对应着树结构的前中后序遍历 但是DFS相对解法较为多元一些,有些时候不得不使用递归进行求解 同时,有很多求解只是进行图的遍历,不关心是广度还是深度优先,其解都是相同的 在这里我们暂且不讨论的基于栈而是侧重基于递归的遍历实现 对于二叉树,最常见的遍历方式有前序(又称 先序)遍历、中序遍历、后序遍历、层次遍历 前中后序只为取得的值先后顺序不同,即递归有先后 依赖栈实现的的深度优先是前序遍历 以下是一个二叉树的前序遍历代码实现:
![算法:深度优先搜索(DFS)]()
2020-06-27鱼鱼
[Quick Start]使用RedisTemplate操作Redis
[Quick Start]使用RedisTemplate操作RedisRedisTemplate现在作为使用率最高的redis三方类库,隶属Spring技术栈,此篇文章意在指引RedisTemplate的快速上手 在实践前,请确保已经有一个可连接的Redis服务 Redis有五大基本数据类型:string、hash、list、set和zset string即是最单纯的k-v存储方式,使用set、get等指令 hash是哈希表的存储方式,比较适合用来存储对象,每一条value相当于Java的一个Map,使用hmset、hget等指令 list是简单的有序列表,每一条value相当于Java的一个List,使用lpush、lpop、rpush、rpop等指令
![[Quick Start]使用RedisTemplate操作Redis](/blog_cover/20200220/cdd943f261664778a1c746b93930db3a.png)
2020-02-23鱼鱼
代理与nginx
代理与nginx代理指接受请求但是不由代理服务器自己处理请求而是直接转发给指定服务器(或是根据负载均衡算法转发给集群部署中的某一台服务器),然后由代理服务器接收请求结果并返回给客户端 指客户端的代理处理方式,指用户通过代理服务器访问指定的网站、服务,最常见的应用是翻墙,并且使用这种方式可以使客户端匿名访问 指服务端的代理处理方式,多个用户在访问网站服务时,实际访问的是反向代理服务器(如nginx),反向代理服务器将请求内容转发给服务集群,最常用于服务器集群负载均衡和避免内网信息暴露 总之,正向代理是对服务端隐藏了客户端信息,反向代理则正相反,有一张图可以很好地概括这两个代理概念(图源知乎,侵删)

2019-05-11鱼鱼
关于多数据源的那些事儿(萌新向)
关于多数据源的那些事儿(萌新向)在日常的JAVA后端开发中多数据源的应用场景并不少见,但对于刚刚接触springboot或是刚刚接触工程化开发的萌新来说却仿佛是一座不可逾越的高山,因为新手常常会局限于某些“固定的”项目配置,不知道如何配置?从哪里开始配置?以及什么能改什么不能改 这种现象在用惯了springboot便捷开发的老手中也很常见,众所周知,相比于spring的springboot简化了很多工程前置配置,虽然增加了工作效率却也使得开发人员失去了了解基础配置的机会 综上,本文主要讲解如何在springboot环境中,以一种最简单的、即起即用的、不依赖中间件和数据库切片的方式配置单一项目的多数据源 限于笔者能力有限,经验尚浅,若有描述不当之处,敬请批评指正

2019-06-28Agostino
算法1
算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高

2019-03-14Sherlock
Kafka服务端集群原理
Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息

2022-03-10鱼鱼