Linux常见指令集和使用技巧(持续更新)
Linux常见指令集和使用技巧(持续更新)目前是一步一步记录用到了的Linux指令 | 管道,将符号前的指令输出作为符号后的指令输入 > 将正常输出重定向(比如指令打印内容输出到文件) >> 将正常输出追加重定向(区别与上面的覆盖,这个指令对于已经存在的文件会追加内容) & 后台执行 && 前面的指令执行完毕才执行后面的指令 || 前面的指令执行出错才执行后面的指令 ls 显示目录下的文件目录或者列出文件信息 ll 属于ls,列出目录下的所有文件信息 cd 进入目录 pwd 显示当前目录的绝对路径 mkdir 创建目录 rm 删除目录(慎) mv 移动目录 即文件的打包安装,对于不同的Linux系统使用的工具有所不同,此处使用ubuntu系统,利用apt工具进行打包

2019-09-09鱼鱼
使用Shiro和token进行无状态登录
使用Shiro和token进行无状态登录我们之前可以使用shiro实现登录,但这些都是基于session或是cookie实现的,这些只能用于单机部署的服务,或是分布式服务共享会话,显然后者开销极大,所以JWT(JSON Web Token)应运而生,JWT是一套约定好的认证协议,通过请求携带令牌来访问那些需鉴权的接口 我们在这里使用token,原理类似,但是规则更为简单,没有形式上的约束,只是在请求Head或是body中添加token用于校验用户身份,token是可以和会话共存的,此处我们使用Shiro的会话登录结合JWT来实现无状态登录,从而实现扫码登录和一般的接口访问授权 项目中,需要实现无状态登录(单点登录,SSO),但是同时也要保持Shiro本身自带的会话登录
![使用Shiro和token进行无状态登录]()
2020-03-22鱼鱼
算法:深度优先搜索(DFS)
算法:深度优先搜索(DFS)在算法:广度优先搜索(BFS)(最短路径)中,我们提到了按照广度优先遍历的搜索方式,使用队列作为常规的搜索方式,与之相对应的为深度优先搜索(DFS) 如果说BFS对应着树结构的前中后序遍历 但是DFS相对解法较为多元一些,有些时候不得不使用递归进行求解 同时,有很多求解只是进行图的遍历,不关心是广度还是深度优先,其解都是相同的 在这里我们暂且不讨论的基于栈而是侧重基于递归的遍历实现 对于二叉树,最常见的遍历方式有前序(又称 先序)遍历、中序遍历、后序遍历、层次遍历 前中后序只为取得的值先后顺序不同,即递归有先后 依赖栈实现的的深度优先是前序遍历 以下是一个二叉树的前序遍历代码实现:
![算法:深度优先搜索(DFS)]()
2020-06-27鱼鱼
PyCharm与python快速开发
PyCharm与python快速开发Python语言作为“胶水语言”,简单易学,开发周期快,功能和扩展性强大,类库丰富 只依赖一门Java并不适用于所有情况,譬如快速开发一次性脚本(修复数据),通过使用Python效率更高,本篇文章旨在介绍本人快速入门Python的一些tips 注意,一些Python的基本语法在此不予介绍,推荐前往廖雪峰的博客查看,博客基于Python3.8版本 关于编译器等配置内容参考PyCharm帮助文档 从Python官网下载Python并安装,配置环境变量,安装PyCharm(这里 我们使用它作为IDE),这里略过 pip是python的包管理与安装工具,当你安装python后,pip也会随之被安装

2021-01-16鱼鱼
Java中的动态代理与静态代理
Java中的动态代理与静态代理proxy(代理)作为一种设计模式在Java中已经应用非常广泛,例如常见的拦截器是代理模式设计的,AOP是通过动态代理实现的,而基于AOP的应用就更多了,从简单的事务应用到Dubbo框架,Java开发中离不开代理,本篇文章主要阐述Java中的代理,此处是比较狭义的代理,仅指方法和类中的代理 代理模式是一种非常常见的设计模式,它通过给某对象提供代理,从而通过代理对象控制原对象的引用 以下是代理模式的简单实现: 类Admin: 对应的代理类AdminProxy: 设计良好的聚合代理模式应该是代理类与被代理类共同继承一个接口,此处只为实现功能 这样在执行new AdminProxy().changeWorld()时,除了会调用原本的new Admin().changeWorld(),在方法前后也可以做出些其他的操作
![Java中的动态代理与静态代理]()
2019-08-09鱼鱼
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配

2020-11-16鱼鱼
Netty
NettyNIO相比IO有诸多利处,但平常开发中若是直接使用原生NIO进行业务开发是很不可取的,否则将面临臃肿而晦涩难懂的代码 所以日常开发中我们会时常使用封装了NIO操作代码的Netty来实现NIO操作 Netty是一个异步事件驱动的网络应用框架,用于快速开发可维护的高性能服务器和客户端
![Netty]()
2019-05-11鱼鱼
ES快速入门(2)——Tokenizer、Reindex
ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
![ES快速入门(2)——Tokenizer、Reindex]()
2020-09-05鱼鱼
Redis原理-源码解析:数据结构3 sorted set(zset))
Redis原理-源码解析:数据结构3 sorted set(zset))Redis的set数据结构在此不多讲,同Java中原理一样,set也可以理解为是hash剥离了value的数据结构,即同为dic 但是zset(有序集合)其实在底层原理上完全不同于set 所有原理实现基于Redis版本6.0.9 先看一下基本的指令实现,着重注意中文注解的地方 t_zset.c 可以看出zset的数据结构不是固定的,在其元素数或是元素的字符串过长时,其结构为zset;否则使用ziplist数据结构(像hash一样为了节省空间),二者的创建方法如下: ziplist的代码和原理可以参考我的博客Redis原理-源码解析:数据结构2 list-鱼鱼的Java小站,就是一个节省内存的压缩的链表结构

2021-02-28鱼鱼
Springboot源码原理:从启动方法看配置加载
Springboot源码原理:从启动方法看配置加载首先看一个springboot项目的配置,我们可以定义一个application.yml,对于不同的环境有时也通过profile配置项指定不同的配置文件(譬如application-dev.yml),也可以通过命令行覆写具体的VM options配置项(举个栗子,启动时执行 java -jar xxx.jar --server.port=8080),此文讲解这些配制的读取原理 整体配置项的优先级从高到低为: 命令行配置; 系统属性(System.getProperties()) 系统环境变量 jar包外的主配置文件(带有) jar包内的主配置文件 jar包外的次要配置文件(由spring.profile指定的)

2021-03-09鱼鱼
多线程应用提高(IV) 线程安全的集合类
多线程应用提高(IV) 线程安全的集合类在Java中的数据结构一篇中,列举了Java中一些常见的集合,此文主要梳理线程安全的相关集合 我们知道,当一个实例对象只能被一个线程访问时(线程私有),无论如何都不会有线程安全的问题,但在多线程的情境下,多个线程操作同一个对象时,可能会出现更新丢失、读写数据不同步、计数击穿等现象,此时这种操作就是非线程安全的 相应地,线程安全的集合有这样的特点:在多个线程操作同一集合时,能保证每一步操作都是安全的,与串行执行的结果一致,不会出现数据不同步等预料之外的问题 可以先看这个小例子Java-lab/ListT.java at master · fishstormX/Java-lab,我在里面解释了
![多线程应用提高(IV) 线程安全的集合类]()
2019-07-13鱼鱼
ELK实战(Ⅰ) 基于ELK整合分布式业务日志
ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;

2020-03-14鱼鱼