算法:动态规划解法及例题
算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌

2020-03-11鱼鱼
IO多路复用模型:select、poll、epoll对比
IO多路复用模型:select、poll、epoll对比我们平时提到的I/O几乎都是同步 阻塞模型,譬如网络请求的socket IO,在数据返回前,相应的线程或是进程将会一直 阻塞直到数据返回,比较直接的处理便是针对IO流一对一的监听,但在IO返回前,相应的系统资源会平白无故的浪费,这种处理方式会大大降低服务器的吞吐 如果我们用很少的线程来监听这些IO,就能实现对系统资源的更好利用,在相应的socket有数据返回时才去读取数据 这种方式被称作IO多路复用,在Linux系统中,实现IO多路复用的方式(从古老到新)有select、poll和epoll 现在很多中间件都使用epoll IO多路复用模型才因此有着很高的性能和吞吐 此处简单描述三种方式的实现和区别

2020-08-11鱼鱼
Servlet线程模型与异步请求
Servlet线程模型与异步请求本篇文章主要意在整理Servlet的线程模型,帮助大家更好的理解请求在广泛使用的web容器下(基于Servlet的Tomcat服务器)的运行原理 Servlet是Java的服务端框架,可以利用Servlet来编写一个动态服务器(动态主要是区别于单纯的html构建的静态页面),主要基于Http协议 通过Servlet提供的API,我们可以轻松的处理网络请求和与其他服务建立连接(相比于基于Socket编程),并且基于Java使得它具有跨平台性、灵活性 简单的说Servlet就是一个封装了操作网络请求的API,它将Http网络请求简化为更容易处理的对象 从某种意义上讲,当我们不适用任何web框架(例如Spring mvc和Struts2)时,我们编写的每一个页面(jsp或是继承于HttpServlet的类)也都可以说是一个Servlet
![Servlet线程模型与异步请求]()
2020-03-23鱼鱼
浅谈锁机制、主流锁设计方案
浅谈锁机制、主流锁设计方案本文旨在探讨通用的锁机制实现逻辑,以Java中常见的锁实现为例 本文提到的锁,是指通过限制并发/并行访问所添加的安全措施,本质上是通过限制线程/进程同时更改数据或是读取数据与写入数据产生时序差从而造成数据问题 锁机制中,有一些常见特性: 可重入性 指同一线程/进程携带相同的标识可以反复多次加锁,每次加锁和释放锁对应的重入次数+1/-1; 读写锁/独享共享 是锁的不同运作模式,分为读写锁,读锁与写锁、写锁与写锁是互斥的,但多个线程/进程可以同时对一个逻辑添加读锁,独享共享是另一种叫法 公平性 锁分为 公平锁和非 公平锁, 公平锁指锁释放和获取的顺序严格按照索取的顺序,非 公平锁则是等待锁的对象共同进行锁释放机会的争抢
![浅谈锁机制、主流锁设计方案]()
2024-10-15鱼鱼
Spring源码解析(3) IoC容器配置读取和容器refresh
Spring源码解析(3) IoC容器配置读取和容器refresh在文章Spring源码解析(I) 基于SSM看Spring的使用和Spring启动监听中,讲述了web容器启动后会触发的方法实现中生成Context的部分,回顾下核心方法: 我们已经分析到了0.处,他对我们生成的容器做了一个判断,对于web.xml监听初始化的Context,其生成的WebApplicationContext都是ConfigurableWebApplicationContext的子类,所以必然会进入if分支 首先通过loadParentContext先加载了父容器,默认是null 然后调用了configureAndRefreshWebApplicationContext方法进行初始化和配置项的读取

2020-08-09鱼鱼
[Quick Start]使用RedisTemplate操作Redis
[Quick Start]使用RedisTemplate操作RedisRedisTemplate现在作为使用率最高的redis三方类库,隶属Spring技术栈,此篇文章意在指引RedisTemplate的快速上手 在实践前,请确保已经有一个可连接的Redis服务 Redis有五大基本数据类型:string、hash、list、set和zset string即是最单纯的k-v存储方式,使用set、get等指令 hash是哈希表的存储方式,比较适合用来存储对象,每一条value相当于Java的一个Map,使用hmset、hget等指令 list是简单的有序列表,每一条value相当于Java的一个List,使用lpush、lpop、rpush、rpop等指令
![[Quick Start]使用RedisTemplate操作Redis](/blog_cover/20200220/cdd943f261664778a1c746b93930db3a.png)
2020-02-23鱼鱼
JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析
JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析在Spring获取Context的源代码中,我们看到了对ClassUtil的方法调用,通过给定ClassName和ClassLoader进行Class的加载: ClassUtil.forName是仅供于Spring内部使用的获取Class对象的方法,来看一下源码: 首先 对于缓存的Class一块,在类的静态块中就能看出其逻辑: 在上面的resolvePrimitiveClassName方法中,先对长度做了一个判断,因为较长的packagename会影响执行的性能: 最终加载Class依旧是通过ClassLoader的,先来看一下获取ClassLoader的方法实现: 此处优先使用了ContextClassLoader作为 类加载器而非默认的AppClassLoader,在JVM源码解析 从 Launcher类浅谈ClassLoader中,提到了关于 类加载器的相关知识,使用ContextClassLoader是为了弥补双亲委派加载机制的对于自定义 类加载器的缺憾:那些自定义的 类加载器并没有机会上场,在使用了AppClassLoader后我们的自定义ClassLoader所加载的Class是无法被加载进去的,使用ContextClassLoader,我们可以在定义线程时,通过Thread的init方法(子线程调用,私有方法)或是setContextClassLoader直接指定使用自定义的ClassLoader
![JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析]()
2020-08-16鱼鱼
Kafka服务端集群原理
Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息

2022-03-10鱼鱼
CAT的使用和原理简介
CAT的使用和原理简介开发中刚好碰到了CAT的应用,利用这篇文章总结一下
![CAT的使用和原理简介]()
2019-08-07鱼鱼
分布式系统一致性的分类
分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功

2021-03-13鱼鱼
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配

2020-11-16鱼鱼
网络时延、异步IO、Pipeline
网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性

2021-04-21鱼鱼