盘点redis中特殊的数据类型 HyperLogLog Bitmap

盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
盘点redis中特殊的数据类型 HyperLogLog Bitmap 2022-01-12鱼鱼

第一个Vue前端独立项目构建尝试(工程化)

第一个Vue前端独立项目构建尝试(工程化)开始我的第一个前端独立项目的构建 使用webPack、npm进行项目模块化构建 安装相关软件准备构建: VSCode npm(node) 查看版本 npm -v node -v 安装相关依赖(使用淘宝镜像): npm install -g cnpm --registry=http://registry.npm.taobao.org 安装vue-cli脚手架: npm install -g vue-cli 查看版本: vue --version 进入目录后新建vue工程: vue init webpack projectname 配置相关内容:
第一个Vue前端独立项目构建尝试(工程化)2019-05-04鱼鱼

阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解

阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解CAT是美团点评的一个基于Java开发的异常和性能监控项目,github地址:https://github.com/dianping/cat 本篇文章不是对CAT本身的源码拆解,而是基于本人依赖CAT client开发的代理项目进行拆解,但是并不会纰漏任何技术细节 CAT当前已有很多不同语言的Client,当然暂且是不 CAT本身是通过CAT client收集数据并上报至CAT server,server会进行并,共有六种常见数据格式:Transaction、Event、Problem、Metric、HeartBeat、调用链标记,其实如果不考虑复杂的处理(譬如Metric是可以基于指标生成折线图,Problem可以根据具体的异常类型追溯到相应的会话Track)除去Transaction剩余的数据格式都可以理解为特殊的Event
阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解2020-07-19鱼鱼

MySQL杂记

MySQL杂记Explain 可以分析一个SELECT语句的性能,只要加在查询语句之前即可,会输出关于查询语句的分析,分析这个例子: id: SELECT 查询的标识符. 每个 SELECT 都会自动分配一个唯一的标识符. select_type: SELECT 查询的类型. table: 所查询的表 partitions: 匹配的分区 type: join 类型 possible_keys: 此次查询中可能选用的索引 key: 此次查询中确切使用到的索引. key_len: 索引长度占字节数 ref: 哪个字段或常数与 key 一起被使用 rows: 显示此查询一共扫描了多少行. 这个是一个估计值.
MySQL杂记2019-02-25鱼鱼

基于Consul的服务注册与发现

基于Consul的服务注册与发现注:文章基于Consul1.6.0版本,部分版本可能会有误差 本文中项目集成部分采用Java语言 consul官网,服务注册/发现是微服务架构中不可或缺的重要组件,起初服务都是单节点的甚至是单体服务,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问(HttpClient/RestTemplate),直到后面出现了多个节点的分布式架构,起初的解决手段是在服务端负载均衡,同时在网关层收束接口,使不同的请求转发到对应不同端口上,这也是前后分离防止前端跨域的手段之一: 图中的B服务也可以是多节点,注册在nginx上面的 要命的是,nginx并不具有服务健康检查的功能,服务调用方在调用一个服务之前是无法知悉服务是否可用的,不考虑这一点分布式的架构高可用的目标就成了一个摆设,解决手段也很简单:对超时或是状态码异常的请求进行重试尝试,请求会被分发到其他可用节点,或者采用服务注册与发现机制察觉健康的服务
基于Consul的服务注册与发现2020-01-10鱼鱼

CAT的使用和原理简介

CAT的使用和原理简介开发中刚好碰到了CAT的应用,利用这篇文章总结一下
CAT的使用和原理简介2019-08-07鱼鱼

有关Session的碎碎念-ban掉cookie之后

有关Session的碎碎念-ban掉cookie之后java web中, 用session来表示用户浏览器(客户端)与服务器建立的一次会话 通常用sessionId来标记一个session,在Java中,有很简单的方式直接获取sessionId; 但是sessionId并不是session的特性,实际上,sessionId是在客户端首次创建会话时将生成的sessionId存入cookie中,在之后的访问中直接读取这个id值 当客户端禁止了cookie行为后,SessionId在每次刷新页面时都会更新,利用id来表示会话也成为了妄想,此篇文章意在说明,如何操作能使SessionId能够独立于cookie使用 这种操作其实在shiro中已经被应用了,当我们进入登录页面中,url后会出现";jssionid=xxxxxx",将sessionid显示的标注在url中,可以使用:
有关Session的碎碎念-ban掉cookie之后2019-03-08鱼鱼

JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析

JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析在Spring获取Context的源代码中,我们看到了对ClassUtil的方法调用,通过给定ClassName和ClassLoader进行Class的加载: ClassUtil.forName是仅供于Spring内部使用的获取Class对象的方法,来看一下源码: 首先 对于缓存的Class一块,在类的静态块中就能看出其逻辑: 在上面的resolvePrimitiveClassName方法中,先对长度做了一个判断,因为较长的packagename会影响执行的性能: 最终加载Class依旧是通过ClassLoader的,先来看一下获取ClassLoader的方法实现: 此处优先使用了ContextClassLoader作为 类加载器而非默认的AppClassLoader,在JVM源码解析 从 Launcher类浅谈ClassLoader中,提到了关于 类加载器的相关知识,使用ContextClassLoader是为了弥补双亲委派加载机制的对于自定义 类加载器的缺憾:那些自定义的 类加载器并没有机会上场,在使用了AppClassLoader后我们的自定义ClassLoader所加载的Class是无法被加载进去的,使用ContextClassLoader,我们可以在定义线程时,通过Thread的init方法(子线程调用,私有方法)或是setContextClassLoader直接指定使用自定义的ClassLoader
JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析2020-08-16鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼

动态路由数据源(多租户)解决方案

动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)
动态路由数据源(多租户)解决方案2021-01-07鱼鱼

Consul高级应用:多数据中心,模板与Client(Zuul)

Consul高级应用:多数据中心,模板与Client(Zuul)此文整理了Consul比较实用的高级功能:多数据中心,模板与维护模式 Consul提供了多数据中心联动的特性,目前看来多数据中心只是在查询阶段提现,各个数据中心的数据持久化和数据目录(k-v对)的更新不相干扰 也就是说,多数据中心的特性目前看来不能作为可用性的保障,当然 不排除可以手动热切换数据中心 最好判断是否使用多数据中心的情形是判断服务是否属于同一系统下,是否相同serviceId能提供相同的无状态服务,以下列举一些情景: 一个系统拥有多个域名的多套部署,提供版本一致的服务(建议使用多数据中心) 一个系统由多个服务器提供的不同服务提供(视服务具体情况,不建议使用多数据中心)
Consul高级应用:多数据中心,模板与Client(Zuul)2020-01-28鱼鱼

ELK实战(Ⅰ) 基于ELK整合分布式业务日志

ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;
ELK实战(Ⅰ) 基于ELK整合分布式业务日志2020-03-14鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}